
Unknown Key-Share Attacks on the Station-to-Station (STS)Protocol �Simon Blake-WilsonCerticom Corp.sblakewi@certicom.com Alfred MenezesUniversity of Waterlooajmeneze@cacr.math.uwaterloo.caAbstractThis paper presents some new unknown key-share attacks on STS-MAC, the version ofthe STS key agreement protocol which uses a MAC algorithm to provide key con�rmation.Various methods are considered for preventing the attacks.1 IntroductionKey establishment is the process by which two (or more) entities establish a shared secret key.The key may subsequently be used to achieve some cryptographic goal, such as con�dentialityor data integrity. Ideally, the established key should have precisely the same attributes as akey established face-to-face | for example, it should be shared by the (two) speci�ed entities,it should be distributed uniformly at random from the key space, and no unauthorized (andcomputationally bounded) entity should learn anything about the key.Key establishment protocols come in various avors. In key transport protocols, a key iscreated by one entity and securely transmitted to the second entity, while in key agreementprotocols both parties contribute information which is used to derive the shared secret key.In symmetric protocols the two entities a priori possess common secret information, while inasymmetric protocols the two entities share only public information that has been authenticated.This paper is concerned with two-party key agreement protocols in the asymmetric setting.Unfortunately, the requirement that key agreement protocols have the same properties asface-to-face key establishment is too vague to be much help to protocol designers, who insteadfocus on designing protocols to meet more explicit requirements. Implicit key authenticationand key con�rmation are two explicit requirements that are often considered essential.Let A and B be two honest entities, i.e., legitimate entities who execute the steps of aprotocol correctly. Informally speaking, a key agreement protocol is said to provide implicit keyauthentication (of B to A) if entity A is assured that no other entity aside from a speci�callyidenti�ed second entity B can possibly learn the value of a particular secret key. Note that theproperty of implicit key authentication does not necessarily mean that A is assured of B actually�Originally published in September 1998; Revised in November 1998.1

possessing the key. A key agreement protocol which provides implicit key authentication to bothparticipating entities is called an authenticated key agreement (AK) protocol.Informally speaking, a key agreement protocol is said to provide explicit key con�rmation(of B to A) if entity A is assured that the second entity B has actually computed the agreedkey. The protocol provides implicit key con�rmation if A is assured that B can compute theagreed key. While explicit key con�rmation appears to provide stronger assurances to A thanimplicit key con�rmation (in particular, the former implies the latter), it appears that, for allpractical purposes, the assurances are in fact the same. That is, the assurance that A requiresin practice is merely that B can compute the key rather than that B has actually computedthe key. Indeed in practice, even if a protocol does provide explicit key con�rmation, it cannotguarantee to A that B will not lose the key between key establishment and key use. Thus itwould indeed seem that implicit key con�rmation and explicit key con�rmation are in practicevery similar.If both implicit key authentication and (implicit or explicit) key con�rmation (of B to A) areprovided, then the key establishment protocol is said to provide explicit key authentication (of BtoA). A key agreement protocol which provides explicit key authentication to both participatingentities is called an authenticated key agreement with key con�rmation (AKC) protocol.In addition to implicit key authentication and key con�rmation, a number of other desirablesecurity attributes of key agreement protocols have been identi�ed including known-key security,forward secrecy, key-compromise impersonation, and unknown key-share. These are typicallyproperties possessed by face-to-face key establishment which may be more or less importantwhen a key establishment protocol is used to provide security in real-life applications.An unknown key-share (UKS) attack on an AK or AKC protocol is an attack whereby anentity A ends up believing she shares a key with B, and although this is in fact the case, Bmistakenly believes the key is instead shared with an entity E 6= A. The signi�cance of UKSattacks on AK and AKC protocols is further discussed in x3.This paper presents some new on-line UKS attacks on STS-MAC, the variant of the station-to-station (STS) [11] AKC protocol which uses a MAC to provide key con�rmation. For anextensive survey on key establishment, see Chapter 12 of [25]. For a recent survey on authenti-cated Di�e-Hellman key agreement protocols, see [10]. Formal de�nitions of authenticated keyagreement can be found for the symmetric setting in [7] and for the asymmetric setting in [9].The remainder of this paper is organized as follows. The STS protocol is described in x2. Inx3 we present the new on-line UKS attacks on STS-MAC, and consider ways of preventing theattacks. In x4, we examine the plausibility of an assumption regarding signature schemes thatis required in order for the attacks to succeed. x5 makes concluding remarks.2 Description of STSThe station-to-station (STS) protocol [11] is a Di�e-Hellman-based AKC protocol that pur-ports to provide both (mutual) implicit key authentication and (mutual) key con�rmation, andadditionally appears to possess desirable security attributes such as forward secrecy and key-compromise impersonation. The STS protocol, as described in [11], provides (explicit) keycon�rmation by using the agreed key K in a symmetric-key encryption scheme; we call this pro-2

tocol STS-ENC. A variant of STS mentioned in [11], which we call STS-MAC, provides (explicit)key con�rmation by using the agreed key K in a MAC algorithm.STS-MAC may be preferred over STS-ENC in many practical scenarios because of existingexport or usage restrictions on secure encryption. Moreover, the use of encryption to providekey con�rmation in STS-ENC is questionable | traditionally the sole goal of encryption is toprovide con�dentiality and if an encryption scheme is used to demonstrate possession of a keythen it is shown by decryption, not by encryption. One advantage of STS-ENC over STS-MACis that the former can facilitate the provision of anonymity.Many protocols related to STS have appeared in the literature (e.g., [5], [14], [18]). It shouldbe noted, however, that these protocols cannot be considered to be minor variants of STS | asthis paper shows, the former protocols have some security attributes that are lacking in STS.The following notation is used throughout the paper.NotationA, B Honest entities.E The adversary.SA A's (private) signing key for a signature scheme S.PA A's (public) veri�cation key for S.SA(M) A's signature on a message M .CertA A's certi�cate containing A's identifying information,A's public signature key PA, and possibly some otherinformation.EK(M) Encryption of M using a symmetric-key encryptionscheme with key K.MACK(M) Message authentication code of M under key K.G, �, n Di�e-Hellman parameters; � is an element of prime or-der n in the �nite multiplicative group G.rA A's ephemeral Di�e-Hellman private key; 1 � rA � n�1.K Ephemeral Di�e-Hellman shared secret; K = �rArB .The two STS variants are presented below (see also [11, 25, 32]). In both descriptions, A iscalled the initiator, while B is called the responder.STS-MAC protocol.The STS-MAC protocol is depicted below. Initiator A selects a random secret integer rA,1 � rA � n� 1, and sends to B the message (1). Upon receiving (1), B selects a random secretinteger rB, 1 � rB � n� 1, computes the shared secret K = (�rA)rB , and sends message (2) toA. Upon receiving (2), A uses CertB to verify the authenticity of B's signing key PB, veri�esB's signature on the message (�rB ; �rA), computes the shared secret K = (�rB)rA , and veri�esthe MAC on SB(�rB ; �rA). A then sends message (3) to B. Upon receipt of (3), B uses CertAto verify the authenticity of A's signing key PA, veri�es A's signature on the message (�rA ; �rB),3

and veri�es the MAC on SA(�rA ; �rB). If at any stage a check or veri�cation performed by Aor B fails, then that entity terminates the protocol run, and rejects.(1) A! B A, �rA(2) A B CertB, �rB , SB(�rB ; �rA), MACK(SB(�rB ; �rA))(3) A! B CertA, SA(�rA ; �rB), MACK(SA(�rA ; �rB))STS-ENC protocol.The STS-ENC protocol is given below. For the sake of brevity, the checks that should beperformed by A and B are henceforth omitted.(1) A! B A, �rA(2) A B CertB, �rB , EK(SB(�rB ; �rA))(3) A! B CertA, EK(SA(�rA ; �rB))3 Unknown key-share attacksAn unknown key-share (UKS) attack on a key agreement protocol is an attack whereby an entityA ends up believing she shares a key with B, and although this is in fact the case, B mistakenlybelieves the key is instead shared with an entity E 6= A. In this scenario, we say that B hasbeen led to false beliefs. If B is the protocol's initiator, then the attack is called a UKS attackagainst the initiator. Otherwise, the attack is called a UKS attack against the responder.It is important to note that if an AK or AKC protocol succumbs to a UKS attack in whichE is a dishonest entity (this is the case with the attacks presented in this paper), then thisdoes not contradict the implicit key authentication property of the protocol | by de�nition,the provision of implicit key authentication is only considered in the case where B engages inthe protocol with an honest entity (which E isn't).An attack scenario. A hypothetical scenario where a UKS attack can have damaging con-sequences is the following; this scenario was �rst described in [11]. Suppose that B is a bankbranch and A is an account holder. Certi�cates are issued by the bank headquarters and withineach certi�cate is the account information of the holder. Suppose that the protocol for electronicdeposit of funds is to exchange a key with a bank branch via an AKC protocol. At the conclu-sion of the protocol run, encrypted funds are deposited to the account number in the certi�cate.Suppose that no further authentication is done in the encrypted deposit message (which mightbe the case to save bandwidth). If the UKS attack mentioned above is successfully launchedthen the deposit will be made to E's account instead of A's account.Another attack scenario. Another scenario where a UKS attack can be damaging is the fol-lowing. Suppose thatB controls access to a suite of sensitive applications (e.g. salary databases).Each application has a password associated with it. The password is chosen and securely dis-tributed by a CA to B and to all entities entitled to access that application. The CA alsocerti�es public keys of all potential users of one (or more) of the applications. A user A gainsaccess to an application by supplying to B the password that is speci�c to that application. Thiscan be done securely as follows. When A wants to gain access to the application, she and Bengage in a single run of an AKC protocol to establish shared keys K1 and K2 (K1 and K2 are4

derived from the shared secret established). A then authenticates and encrypts the passwordusing the keys and sends the result to B. B checks the encrypted authenticated password andsupplies access to A. Once access has been granted, the application establishes new keys withA to secure the subsequent use of the application.If the AKC protocol does not provide unknown key-share, an active adversary E can induceB into believing that he shares the keys K1 and K2 with E, while A correctly believes that sheshares the keys with B. E may then use the encrypted authenticated password sent by A togain access to the application.Significance of UKS attacks. The importance of preventing UKS attacks has been debatedin the literature. It is interesting to note that prevention of UKS attacks was one of the originaldesign principles of STS [11]. Here we make two observations about the relevance of UKSattacks. First, notice that traditional, face-to-face key establishment is not susceptible to UKSattacks. Therefore anyone implementing a key establishment protocol that does not preventUKS attacks as a drop-in replacement for face-to-face key establishment must check whetherUKS attacks represent a security concern in the application. Second, notice that a UKS attackon an AKC protocol is more serious than a UKS attack on an AK protocol (which does notprovide key con�rmation). As stated in [9], keys established using AK protocols should becon�rmed prior to cryptographic use. Indeed, some standards such as [4] take the conservativeapproach of mandating key con�rmation of keys agreed in an AK protocol. If appropriate keycon�rmation is subsequently provided, then the attempt at a UKS attack will be detected. Forthis reason, the above hypothetical banking scenario (in particular, the assumption that nofurther authentication is performed after termination of the key agreement protocol) is realisticif an AKC protocol is used (since key con�rmation has already been provided), and unrealisticif an AK protocol is used (since key con�rmation has not yet been provided).The remainder of this section discusses UKS attacks on STS-MAC and STS-ENC. x3.1describes well-known public key substitution UKS attacks (for example, see [24, 25]). Theseattacks can be prevented if a CA checks possession of private keys during the certi�cationprocess. x3.2 presents new on-line UKS attacks on STS-MAC that are not prevented simply bychecking knowledge of private keys during certi�cation. It suggests other methods which may beused to prevent the new attacks. The attacks are similar in spirit to Kaliski's recent attack [20]on the AK protocol of [21] | however the attacks we present are more damaging because, unlikeKaliski's attack, they are not prevented by appropriate key con�rmation. Finally, in x3.3 weconsider possible UKS attacks on STS-ENC which may not be prevented by checking knowledgeof private keys during certi�cation. The attacks in x3.3 are considerably more far-fetched thanthe attacks in x3.2, but they demonstrate the value of public-key validation and formal protocolanalysis.3.1 Public key substitution UKS attacksThis section describes well-known public key substitution UKS attacks on STS-MAC and STS-ENC. 5

Attack against the responder.In this UKS attack against the responder, the adversary E registers A's public key PA as itsown; i.e., PE = PA. When A sends B message (1), E intercepts it and replaces the identity Awith E. E then passes message (2) from B to A unchanged. Finally E intercepts message (3),and replaces CertA with CertE . Since PA = PE , we have SA(�rA ; �rB) = SE(�rA ; �rB). HenceB accepts the key K and believes that K is shared with E, while in fact it is shared with A.Note that E does not learn the value of K. The attack is depicted below. The notation A ,! Bmeans that A transmitted a message intended for B, which was intercepted by the adversaryand not delivered to B.(1) A ,! B A, �rA(1') E ! B E, �rA(2) E B CertB , �rB , SB(�rB ; �rA), MACK(SB(�rB ; �rA))(2') A E CertB , �rB , SB(�rB ; �rA), MACK(SB(�rB ; �rA))(3) A ,! B CertA, SA(�rA ; �rB), MACK(SA(�rA ; �rB))(3') E ! B CertE , SA(�rA ; �rB), MACK(SA(�rA ; �rB))Attack against the initiator.E can similarly launch a UKS attack against the initiator A by registering B's public PB as itsown. The attack is depicted below.(1) A! E A, �rA(1') E ! B A, �rA(2) A - B CertB , �rB , SB(�rB ; �rA), MACK(SB(�rB ; �rA))(2') A E CertE , �rB , SB(�rB ; �rA), MACK(SB(�rB ; �rA))(3) A! E CertA, SA(�rA ; �rB), MACK(SA(�rA ; �rB))(3') E ! B CertA, SA(�rA ; �rB), MACK(SA(�rA ; �rB))Preventing the attacks.Both these public key substitution attacks are well-known and are usually prevented by requiringthat entities prove to the certi�cate-issuing authority possession of the private keys correspondingto their public keys during the certi�cation process. The attacks can also be launched againstSTS-ENC; it this case, an alternate way to prevent the attacks is to encrypt certi�cates usingthe shared key K.3.2 On-line UKS attacks on STS-MACThis section describes the new on-line UKS attacks on STS-MAC. The following assumptionsare made in order for the attacks to be e�ective.1. The signature scheme S used in STS has the following duplicate-signature key selectionproperty. Suppose that PA (A's public key) and A's signature sA on a message M areknown. Then the adversary is able to select a key pair (PE; SE) with respect to which sA6

is also E's signature on the messageM . The plausibility of this assumption is examined inx4, where it is shown that the RSA, Rabin, ElGamal, DSA and ECDSA signature schemesall possess the duplicate-signature key selection property in certain situations.2. E is able to get its public key certi�ed during a run of the STS protocol. This assumptionis plausible, for instance, in situations where delays in the transmission of messages arenormal, and where the CA is on-line.Attack against the responder.This new UKS attack on STS-MAC is similar to the public key substitution attack against theresponder in x3.1. After A sends message (3), E intercepts it and selects a key pair (PE; SE)for the employed signature scheme such that SE(�rA ; �rB) = SA(�rA ; �rB). E then obtains acerti�cate CertE for PE , and transmits message (3') to B.Attack against the initiator.This new UKS attack on STS-MAC is similar to the public key substitution attack against theinitiator in x3.1. After B sends message (2), E intercepts it and selects a key pair (PE; SE)for the employed signature scheme such that SE(�rB ; �rA) = SB(�rB ; �rA). E then obtains acerti�cate CertE for PE , and transmits message (2') to A.Preventing the attacks.In the on-line UKS attacks, the adversary knows the private key SE corresponding to its chosenpublic key PE . Hence, unlike the case of the public key substitution attacks, the on-line attackscannot be prevented by requiring that entities prove to the certi�cate-issuing authority possessionof the private keys corresponding to their public keys during the certi�cation process.The following outlines some measures that can be taken to prevent the on-line UKS attackson STS-MAC.1. If A sends its certi�cate CertA in ow (1) rather than in ow (3), then the on-line UKSattack against the responder cannot be launched; however the on-line UKS attack againstthe initiator still succeeds.2. If certi�cates are exchanged a priori, i.e., prior to the protocol run, then the on-line UKSattacks fail. A priori exchanges of certi�cates may be undesirable in practice because itincreases the number of protocol ows.3. Including the identities of the sender and intended receiver as well as the ow number1 inthe messages being signed prevents the on-line UKS attacks. Inclusion of the ow numberand the identity of the message sender may help guard against attacks yet to be discov-ered. (See [26] for an example of how inclusion of ow numbers can help guard against1In this paper, we assume that message �elds such as ow numbers, identities, and group elements, arerepresented using �xed-length encodings and concatenated. Otherwise, some other unique pre�x-free encodingsuch as ASN.1 DER [15, 16] should be used. 7

certain attacks on entity authentication mechanisms.) These modi�cations add negligiblecomputational overhead to the protocol and follow the generic philosophy expounded in[9] and [21]. The revised protocol is shown below.(1) A! B A, �rA(2) A B CertB, �rB , SB(2; B; A; �rB; �rA),MACK(SB(2; B; A;�rB; �rA))(3) A! B CertA, SA(3; A; B; �rA; �rB), MACK(SA(3; A; B; �rA; �rB))4. In the original STS-MAC protocol and the modi�cation presented in item 3 above, theagreed key K is used as the MAC key for the purpose of providing explicit key con�rma-tion. A passive adversary now has some information about K | the MAC of a knownmessage under K. The adversary can use this to distinguish K from a key selected uni-formly at random from the key space2. The elegant general principle that in the face of acomputationally bounded adversary a computationally indistinguishable key can later beused in place of a traditional face-to-face secret key anywhere without sacri�cing securitycan therefore not be applied (and security must be analyzed on a case-by-case basis). An-other drawback of providing explicit key con�rmation in this way is that the agreed keyK may be subsequently used with a di�erent cryptographic mechanism than the MACalgorithm| this violates a fundamental cryptographic principle that a key should not beused for more than one purpose.An improvement, therefore, is to provide implicit, rather than explicit, key con�rmation.Two keys K and K0 are derived from �rArB using a cryptographic hash function H . Inpractice, this can be achieved by setting KkK0 = H(�rArB), or K = H(01; �rArB) andK0 = H(10; �rArB). K0 is used as the MAC key for the session, while K is used as theagreed session key. The revised protocol is depicted below.(1) A! B A, �rA(2) A B CertB, �rB , SB(2; B; A; �rB; �rA),MACK0(SB(2; B; A; �rB; �rA))(3) A! B CertA, SA(3; A; B; �rA; �rB), MACK0(SA(3; A; B;�rA; �rB))We imagine that this protocol (and also the protocol in item 6 below) can be analyzed bymodelling the hash function H as a random oracle [6].5. Instead of including the identities of the entities in the signed message, one could includethem in the key derivation function, whose purpose is to derive the shared key from theshared secret �rArB . In the protocol of item 3, the shared secret key would be K =H(�rArB ; A; B), while in the 2 protocols of item 4, the shared keys would be (i) KkK0 =H(�rArB ; A; B) and (ii) K 0 = H(01; �rArB ; A; B) and K = H(10; �rArB ; A; B).However, key derivation functions have not been well-studied by the cryptographic commu-nity. In particular, the desirable security properties of a key derivation function have notyet been speci�ed. For this reason, the protocols presented in items 3 and 4 are preferredover the variants which include identities in the key derivation function.6. The protocols in item 4 provide implicit key con�rmation. While the assurance that theother entity has actually computed the shared key K is not provided, each entity does2The key space here is K = f�i : 1 � i � n � 1g. 8

get the assurance that the other has computed the shared secret �rArB . Implicit keycon�rmation is still provided (to a somewhat lesser degree) if the MACs are not includedin the ows. The revised protocol is shown below:(1) A! B A, �rA(2) A B CertB, �rB , SB(2; B; A; �rB; �rA)(3) A! B CertA, SA(3; A; B; �rA; �rB)7. ISO 11770-3 has one variant each of the STS-ENC and STS-MAC protocols | these areincluded as \Key agreement mechanism 7" in [18]. Both these variants resist the on-lineUKS attacks. The ISO variant of STS-MAC, which we call ISO-STS-MAC, is the following:(1) A! B A, �rA(2) A B CertB, �rB , SB(�rB ; �rA; A), MACK(�rB ; �rA; A)(3) A! B CertA, SA(�rA ; �rB ; B), MACK(�rA ; �rB ; B)Notice that, unlike the original description of STS-MAC, identities of the intended recipi-ents are included in the signatures in ISO-STS-MAC. This was apparently done in orderto be conformant with the entity authentication mechanisms in ISO 9798-3 [17], ratherthan because of a security concern with STS without the inclusion of identities. Anotherdi�erence between ISO-STS-MAC and STS-MAC is that in the former the MAC algorithmis applied to the message that is signed, rather than to the signature of the message.We note that Bellare, Canetti and Krawczyk [5] have recently provided a model andsecurity de�nitions under which ISO-STS-MAC without the inclusion of the MACs isprovably secure. How their model compares with the model of [9] is not entirely clear.3.3 Other UKS attacksThe on-line UKS attacks of x3.2 cannot, in general, be launched on STS-ENC because the sig-natures SA(�rA ; �rB) and SB(�rB ; �rA) are not known by the adversary. Is it possible to extendthe attacks to provide UKS attacks on STS-ENC that cannot be prevented by checking knowl-edge of private keys during certi�cation? This section suggests a possible (although unlikely)scenario in which such (o�-line) attacks on STS-ENC (and STS-MAC) may be successful. Theattack illustrates two points:1. A complete description of STS-ENC should include a complete speci�cation of the under-lying symmetric-key encryption and signature schemes, together with a statement of thesecurity properties they are assumed to possess; and2. Performing public-key validation [19] of signature keys is a sensible measure to take. (Ra-tionale for performing key validation of public keys for use in Di�e-Hellman-based keyagreement protocols is provided in [23].)The attack is similar to the attack presented in x3.2, but relies on the following assumptionon the signature scheme: E is able to certify a key pair (PE; SE) such that A's signature onany message M is also valid as E's signature on messageM . Note that deterministic signatureschemes cannot possess this property and be secure, since E knows SE and can therefore compute9

A's signatures using SE . However it is possible that some probabilistic signature schemes possessthis property. This is illustrated by the following example.Suppose that the underlying signature scheme is the ElGamal signature scheme (see x4.3).Suppose that entities select their own domain parameters p and g, as may be the case in highsecurity applications. Suppose further that when certifying an entity E's public key PE =(p; g; y) (where y = ge (mod p) and e is E's private key), the CA does not perform public-key validation; that is, the CA does not verify that p, g and y possess the requisite arithmeticproperties | that p is prime, g is a generator of Z�p, and 1 � y � p � 1. Finally, suppose thatthe CA veri�es that E possesses the private key corresponding to its public key by asking E tosign a challenge message.If a dishonest entity E selects g = 0 (which is not a generator of Z�p), then y = 0. In thiscase, every pair of integers (r; s), where 1 � r � p � 1 and 1 � s � p � 2, is a valid signaturefor E on any messageM since the ElGamal signature veri�cation equation (see x4.3) gm � yrrs(mod p) is satis�ed. In particular, if the CA does not validate E's public key, then it will acceptE's proof of possession of its private key.Having obtained a certi�cate CertE of such an invalid public key PE = (p; 0; 0) (where theprime p is greater than the prime moduli of A and B), E can now launch UKS attacks againstthe responser or the initiator in both STS-ENC and STS-MAC in exactly the same way asdescribed in x3.1. For example, in the attack against the initiator, E replaces A's identity withits own identity in ow (1), and then replaces CertA with CertE in ow (3). Note that theseare not on-line attacks since E can get its public key certi�ed in advance of the attack. Notealso that these attacks are di�erent from the public key substitution attacks of x3.1, becausein the former E has indeed demonstrated possession of its private key to the CA during thecerti�cation process.As precautionary measures, we recommend that public-key validation of signature keys beperformed, and that STS-ENC be modi�ed so that either the ow number and identities ofthe sender and intended recipient are included in the signed message3 or that the identities beincluded in the key derivation function (as in item 5 in x3.2).4 Duplicate-signature key selectionThis section examines whether commonly used signature schemes possess the duplicate-signaturekey selection property that is required in x3.2: given A's public key PA for a signature schemeS, and given A's signature sA on a message M , can an adversary select a key pair (PE; SE)for S such that sA is also E's signature on the message M? We demonstrate that, in certaincircumstances, the RSA [31], Rabin [30], ElGamal [12], DSA [1, 27], and ECDSA [3] signatureschemes all possess this property. In the RSA scheme, it is assumed that each entity is permittedto select its own encryption exponent e. In the ElGamal, DSA and ECDSA schemes, it isassumed that entities are permitted to select their own domain parameters; this is what mightbe done in high security applications.It must be emphasized that possession of the duplicate-signature key selection property does3The resulting revised protocols are the same as the ones presented in items 3 and 4 in x3.2 with the data(SA(m);MACK(SA(m))) replaced by EK(SA(m)), and (SB(m);MACK(SB(m))) replaced by EK(SB(m)).10

not constitute a weakness of the signature scheme | the goal of a signature scheme is to beexistentially unforgeable against an adaptive chosen-message attack [13].In the following, H denotes a cryptographic hash function such as SHA-1 [28].4.1 RSAKey pair: A's public key is PA = (N;E), where N is a product of two distinct primes P andQ, and 1 < E < �, gcd(E;�) = 1, where � = (P � 1)(Q � 1). A's private key is D, where1 < D < � and ED � 1 (mod �).Signature generation: To sign a message M , A computes m = H(M) and s = mD mod N .A's signature on M is s. Here, H may also incorporate a message formatting procedure such asthe ones speci�ed in the ANSI X9.31 [2], FDH [8] and PSS [8] variants of RSA.Signature veri�cation: Given an authentic copy of A's public key, one can verify A's signatures on M by computing m = H(M), and verifying that sE � m (mod N).Adversary's actions: Given A's public key PA and A's signature s onM , E does the following.1. Compute m = H(M).2. Select a prime p such that:(a) p� 1 is smooth; and(b) s and m are both generators of Z�p.3. Select a prime q such that:(a) pq > N ;(b) q � 1 is smooth;(c) gcd(p� 1; q � 1) = 2; and(d) s and m are both generators of Z�q .4. Since p � 1 is smooth, E can use the Pohlig-Hellman algorithm [29] to e�ciently �nd aninteger x1 such that sx1 � m (mod p).5. Similarly, since q � 1 is smooth, E can e�ciently �nd an integer x2 such that sx2 � m(mod q).6. Compute n = pq, � = (p� 1)(q � 1), and � = �=2.7. Find the unique integer e, 1 < e < �, such that e � x1 (mod (p � 1)) and e � x2(mod (q � 1)). This can be done by �rst solving the congruencet(p� 1)=2 � (x2 � x1)=2 (mod (q � 1)=2)for t (note that x2�x1 is indeed even), and then setting e = x1+ t(p�1) mod �. Note alsothat since m is a generator of Z�p, we have gcd(x1; p� 1) = 1; similarly gcd(x2; q� 1) = 1.If follows that gcd(e; �) = 1. 11

8. Compute an integer d, 1 < d < �, such that ed � 1 (mod �).9. E forms PE = (n; e); E's private key is d.Observe that s is also E's signature on M sincese � se mod (p�1) � sx1 � m (mod p)and se � se mod (q�1) � sx2 � m (mod q);whence se � m (mod n):Remarks1. The following is a heuristic analysis of the expected number of candidate p's and q's thatare chosen before primes satisfying the conditions in steps 2 and 3 are found.Suppose that the desired bitlength of both p and q is k. Candidates p and q can beselected by �rst choosing p � 1 and q � 1 to be products of small prime powers (thusensuring conditions 2(a) and 3(b)); the primes occurring in the two products should bepairwise distinct, except for a 2 which occurs exactly once in each product (this ensuresthat gcd(p � 1; q � 1) = 2). The candidate p is then subjected to a primality test. Bythe prime number theorem [25, Fact 2.95], the expected number of trials before a primep is obtained is (12 ln 2)k. Given that p is prime, the probability that both m and s aregenerators of Z�p is (see [25, Fact 2.102])��(p� 1)(p� 1) �2 < � 16 ln ln(p� 1)�2 :If either m or s does not generate Z�p, then another candidate p is selected. Hence, theexpected number of trials before an appropriate p is found is�12 ln 2� k(6 ln ln(p� 1))2 = O(k(lnk)2):It follows that the expected number of candidates p and q before appropriates primes arefound is also O(k(lnk)2).2. Observe that (n; e) is a valid RSA public key, and that E knows the corresponding privatekey d.3. To reduce the amount of on-line work required, the adversary could use A's public key toprecompute several candidate pairs of primes p and q which satisfy conditions 2(a), 3(a),3(b), and 3(c). Subsequently, when the adversary sees A's signature s on M , it can choosea precomputed pair of primes which also satisfy conditions 2(b) and 3(d).12

4.2 RabinKey pair: A's public key is PA = N , where N is a product of two distinct primes P and Q.A's private key is (P;Q).Signature generation: To sign a messageM , A computesm = H(M), and �nds a square roots of m modulo N : s2 � m mod N . A's signature on M is s. (If m is not a quadratic residuemodulo N , then m should be adjusted in a predetermined way so that the result is one.)Signature veri�cation: Given an authentic copy of A's public key, one can verify A's signatures on M by computing m = H(M), and verifying that s2 � m (mod N).Adversary's actions: Given A's public key PA and A's signature s on M , E computes n =(s2 � m)=N and forms PE = n. Observe that s is also E's signature on M since s2 � m(mod n).Remarks1. The bitlength of n is expected to be the same as the bitlength of N .2. n is most likely not the product of two distinct primes, and hence is not a valid Rabinpublic key. (Assuming that n is a random k-bit integer, the expected total number ofprime factors of n is approximately ln k; [25, Fact 3.7(iii)].) However, it is di�cult, ingeneral, to test whether a composite integer is a product is of two distinct primes; henceRabin public-key validation is usually not performed in practice.3. Assuming that n is a random k-bit integer, the probability that the bitlength of the second-largest prime factor of n is � 0:22k is about 12 [25, Fact 3.7(ii)]. Thus, for example, if512-bit moduli are being used, then the probability that the bitlength of the second-largestprime factor of n is � 113 is about 12 . Such n can be readily factored with the ellipticcurve factoring algorithm [22]. Given the prime factorization of n, E can hope to convincethe CA that it knows the corresponding private key (even though one may not exist | nmay not be a product of 2 distinct primes), by signing (computing square roots modulon, as with the Rabin scheme) a message of the CA's choice.4.3 ElGamalDomain parameters: A safe prime p (i.e., q := (p� 1)=2 is prime), and a generator g of Z�p.Key pair: A's private key is an integer a, 1 � a � p� 2. A's public key is PA = (p; g; y), wherey = ga mod p.Signature generation: To sign a message M , A selects a random integer k, 1 � k � p � 2,such that gcd(k; p � 1) = 1, and computes m = H(M), r = gk mod p, and s = k�1(m �ar) mod (p� 1). A's signature on M is (r; s).Signature veri�cation: Given an authentic copy of A's public key, one can verify A's signature(r; s) on M by computing m = H(M), and verifying that gm � yrrs (mod p).Adversary's actions: Given A's public key PA and A's signature (r; s) on M , E does thefollowing. If gcd(s; p�1) 6= 1 or if gcd(m; r) = 2 or q, then E terminates with failure. Otherwise,13

E selects an arbitrary integer c, 1 � c � p� 2, such that gcd(t; p� 1) = 1, where t = m� cr. Ethen computes g = (rs)t�1 mod (p�1) mod p and forms PE = (p; g; y), where y = gc mod p.Observe that (r; s) is also E's signature on M sinceg(�m)yrrs � g�(m�cr)rs � (rs)�t�1t mod (p�1)rs � 1 (mod p):Remarks.The condition gcd(s; p � 1) = 1 ensures that rs, and hence also g, is a generator of Z�p. Thecondition gcd(m; r) 6= 2; q ensures that there exists a c for which gcd(t; p�1) = 1; it also impliesthat a non-negligible proportion of all c's satisfy gcd(t; p � 1) = 1. If we make the heuristicassumption that r, s and m are distributed uniformly at random from [1; p � 1], then we seethat the success probability of the adversary is about 38 .4.4 DSADomain parameters: Primes p and q such that q divides p � 1, and an element g 2 Z�p oforder q. Typically p has bitlength 1024 and q has bitlength 160.Key pair: A's private key is an integer a, 1 � a � q � 1. A's public key is PA = (p; q; g; y),where y = ga mod p.Signature generation: To sign a message M , A selects a random integer k 2 [1; q � 1], andcomputes m = H(M), r = (gk mod p) mod q, and s = k�1(m+ ar) mod q. A's signature on Mis (r; s).Signature veri�cation: Given an authentic copy of A's public key, one can verify A's signature(r; s) on M by computing m = H(M), u1 = s�1m mod q, u2 = s�1r mod q, and verifying thatr = (gu1yu2 mod p) mod q.Adversary's actions: Given A's public key PA and A's signature (r; s) on M , E selectsa random integer c 2 [1; q � 1] such that t := ((u1 + cu2) mod q) 6= 0. E then computesr1 = gu1yu2 mod p and g = rt�1 mod q1 mod p, and forms PE = (p; q; g; y) where y = gc mod p.Note that ord(g) = q, so PE is a valid DSA public key.Observe that (r; s) is also E's signature on M sincegu1yu2 � gu1+cu2 � gt � r1 (mod p);whence r = (gu1yu2 mod p) mod q.4.5 ECDSAECDSA is the elliptic curve analogue of the DSA and is speci�ed in [3].Domain parameters: An elliptic curve E de�ned over the �nite �eld Fq with #E(Fq) = nhand n prime, and a point P 2 E(Fq) of order n.Key pair: A's private key is an integer a, 1 � a � n� 1. A's public key is PA = (p; E; n;P;Q),where Q = aP . 14

Signature generation: To sign a message M , A selects a random integer k, 1 � k � n � 1,and computes m = H(M), R = kP , r = x(R) mod n, and s = k�1(m+ ar) mod n. Here, x(R)denotes the x-coordinate of the point R. A's signature on M is (r; s).Signature veri�cation: Given an authentic copy of A's public key, one can verify A's signature(r; s) onM by computingm = H(M), R = s�1mP+s�1rQ, and verifying that r = x(R) mod n.Adversary's actions: Given A's public key PA and A's signature (r; s) on M , E selects anarbitrary integer c, 1 � c � n�1, such that t := ((s�1m+s�1rc) mod n) 6= 0. E then computesR = s�1mP + s�1rQ and P = (t�1 mod n)R, and forms PE = (p; E; n; P;Q), where Q = cP .Note that ord(P) = n, so PE is a valid ECDSA public key.Observe that (r; s) is also E's signature on M sinces�1mP + s�1rQ = (s�1m+ s�1rc)P = tP = R; (1)whence r = x(R) mod n.Remarks.E's domain parameters are the same as A's, with the exception of the base point P . If the ellipticcurve was chosen veri�ably at random using a canonical seeded hash function (e.g., as speci�edin ANSI X9.62 [3]), then E can use the same (non-secret) seed as selected by A to demonstrateto the CA that the curve was indeed selected veri�ably at random. There is no requirementin ANSI X9.62 for generating the base point veri�ably at random. Hence, performing domainparameter validation as speci�ed in ANSI X9.62 does not foil the adversary.5 ConclusionsThis paper presented some new unknown key-share attacks on the STS-MAC key agreementprotocol. The attacks are a concern in practice since STS-MAC purports to provide bothimplicit key authentication and key con�rmation. There are various ways in which the attackscan be circumvented. Our preferred way is to include ow numbers and identities in the messagesbeing signed, and to separate keys used to provide key con�rmation from derived shared secretkeys.AcknowledgementsThe authors would like to thank Don Johnson and Minghua Qu for their valuable comments onearlier drafts of this paper.References[1] ANSI X9.30 (Part 1), Public Key Cryptography Using Irreversible Algorithms for the Fi-nancial Services Industry { Part 1: The Digital Signature Algorithm (DSA), 1995.15

[2] ANSI X9.31, Digital Signatures Using Reversible Public Key Cryptography for the FinancialServices Industry (rDSA), working draft, March 1998.[3] ANSI X9.62, The Elliptic Curve Digital Signature Algorithm (ECDSA), working draft,August 1998.[4] ANSI X9.63, Elliptic Curve Key Agreement and Key Transport Protocols, working draft,October 1998.[5] M. Bellare, R. Canetti and H. Krawczyk, \A modular approach to the design and anal-ysis of authentication and key exchange protocols", Proceedings of the 30th Annual Sym-posium on the Theory of Computing, 1998. A full version of this paper is available athttp://www-cse.ucsd.edu/users/mihir[6] M. Bellare and P. Rogaway, \Random oracles are practical: a paradigm for designinge�cient protocols", 1st ACM Conference on Computer and Communications Security, 1993,62{73. A full version of this paper is available at http://www-cse.ucsd.edu/users/mihir[7] M. Bellare and P. Rogaway, \Entity authentication and key distribution", Advances inCryptology { Crypto '93, LNCS 773, 1993, 232-249. A full version of this paper is availableat http://www-cse.ucsd.edu/users/mihir[8] M. Bellare and P. Rogaway, \The exact security of digital signatures|how to sign withRSA and Rabin", Advances in Cryptology { Eurocrypt '96, LNCS 1070, 1996, 399-416.[9] S. Blake-Wilson, D. Johnson and A. Menezes, \Key agreement protocols and their se-curity analysis", Proceedings of the sixth IMA International Conference on Cryptogra-phy and Coding, LNCS 1355, 1997, 30-45. A full version of this paper is available athttp://www.cacr.math.uwaterloo.ca/[10] S. Blake-Wilson and A. Menezes, \Authenticated Di�e-Hellman key agreement protocols",Proceedings of SAC '98, LNCS, to appear.[11] W. Di�e, P. van Oorschot and M. Wiener, \Authentication and authenticated key ex-changes", Designs, Codes and Cryptography, 2 (1992), 107-125.[12] T. ElGamal, \A public key cryptosystem and a signature scheme based on discrete loga-rithms", IEEE Transactions on Information Theory, 31 (1985), 469-472.[13] S. Goldwasser, S. Micali, and R. Rivest, \A digital signature scheme secure against adaptivechosen message attacks", SIAM Journal on Computing, 17 (1988), 281-308.[14] IPSEC Working Group, The OAKLEY Key Determination Protocol, Internet Draft, Inter-net Engineering Task Force, available from http://www.ietf.cnri.reston.va.us/[15] ISO/IEC 8824-1, Information Technology { Open Systems Interconnection { Abstract Syn-tax Notation One (ANS.1) { Part 1: Speci�cation of Basic Notation.[16] ISO/IEC 8825-3, Information Technology { Open Systems Interconnection { Speci�cationof ASN.1 Encoding Rules { Part 3: Distinguished Canonical Encoding Rules.16

[17] ISO/IEC 9798-3, Information Technology { Security Techniques { Entity AuthenticationMechanisms { Part 3: Entity Authentication Using a Public-Key Algorithm 1993.[18] ISO/IEC 11770-3, Information Technology { Security Techniques { Key Management { Part3: Mechanisms Using Asymmetric Techniques, draft, (DIS), 1996.[19] D. Johnson, Contribution to ANSI X9F1 working group, 1997.[20] B. Kaliski, Contribution to ANSI X9F1 and IEEE P1363 working groups, June 17 1998.[21] L. Law, A. Menezes, M. Qu, J. Solinas, S. Vanstone, \An e�cient protocol for authenti-cated key agreement", Technical report CORR 98-05, Department of C&O, University ofWaterloo, 1998. Also available at http://www.cacr.math.uwaterloo.ca/[22] H.W. Lenstra, \Factoring integers with elliptic curves", Annals of Mathematics, 126 (1987),649-673.[23] C. Lim and P. Lee, \A key recovery attack on discrete log-based schemes using a primeorder subgroup", Advances in Cryptology { Crypto '97, LNCS 1294, 1997, 249-263.[24] A. Menezes, M. Qu and S. Vanstone, \Some new key agreement protocols providing mutualimplicit authentication", Workshop on Selected Areas in Cryptography (SAC '95), 22-32,1995.[25] A. Menezes, P. van Oorschot and S. Vanstone, Handbook of Applied Cryptography, CRCPress, 1997.[26] C. Mitchell and A. Thomas, \Standardising authentication protocols based on public keytechniques", Journal of Computer Security, 2 (1993), 23-36.[27] National Institute of Standards and Technology, Digital Signature Standard, FIPS Publica-tion 186, 1994.[28] National Institute of Standards and Technology, Secure Hash Standard (SHS), FIPS Pub-lication 180-1, 1995.[29] S. Pohlig and M. Hellman, \An improved algorithm for computing logarithms over GF (p)and its cryptographic signi�cance", IEEE Transactions on Information Theory, 24 (1978),106-110.[30] M.O. Rabin, \Digitalized signatures and public-key functions as intractable as factoriza-tion", MIT/LCS/TR-212, MIT Laboratory for Computer Science, 1979.[31] R.L. Rivest, A. Shamir and L.M. Adleman, \A method for obtaining digital signatures andpublic-key cryptosystems", Communications of the ACM, 21 (1978), 120-126.[32] P. van Oorschot, \Extending cryptographic logics of belief to key agreement protocols", 1stACM Conference on Computer and Communications Security, ACM Press, 1993, 232-243.17

