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Abstract

This paper presents some new unknown key-share attacks on STS-MAC, the version of
the STS key agreement protocol which uses a MAC algorithm to provide key confirmation.
Various methods are considered for preventing the attacks.

1 Introduction

Key establishment is the process by which two (or more) entities establish a shared secret key.
The key may subsequently be used to achieve some cryptographic goal, such as confidentiality
or data integrity. lIdeally, the established key should have precisely the same attributes as a
key established face-to-face — for example, it should be shared by the (two) specified entities,
it should be distributed uniformly at random from the key space, and no unauthorized (and
computationally bounded) entity should learn anything about the key.

Key establishment protocols come in various flavors. In key transport protocols, a key is
created by one entity and securely transmitted to the second entity, while in key agreement
protocols both parties contribute information which is used to derive the shared secret key.
In symmetric protocols the two entities a priori possess common secret information, while in
asymmetric protocols the two entities share only public information that has been authenticated.
This paper is concerned with two-party key agreement protocols in the asymmetric setting.

Unfortunately, the requirement that key agreement protocols have the same properties as
face-to-face key establishment is too vague to be much help to protocol designers, who instead
focus on designing protocols to meet more explicit requirements. Implicit key authentication
and key confirmation are two explicit requirements that are often considered essential.

Let A and B be two honest entities, i.e., legitimate entities who execute the steps of a
protocol correctly. Informally speaking, a key agreement protocol is said to provide implicit key
authentication (of B to A) if entity A is assured that no other entity aside from a specifically
identified second entity B can possibly learn the value of a particular secret key. Note that the
property of implicit key authentication does not necessarily mean that A is assured of B actually
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possessing the key. A key agreement protocol which provides implicit key authentication to both
participating entities is called an authenticated key agreement (AK) protocol.

Informally speaking, a key agreement protocol is said to provide ezplicit key confirmation
(of B to A) if entity A is assured that the second entity B has actually computed the agreed
key. The protocol provides implicit key confirmation if A is assured that B can compute the
agreed key. While explicit key confirmation appears to provide stronger assurances to A than
implicit key confirmation (in particular, the former implies the latter), it appears that, for all
practical purposes, the assurances are in fact the same. That is, the assurance that A requires
in practice is merely that B can compute the key rather than that B has actually computed
the key. Indeed in practice, even if a protocol does provide explicit key confirmation, it cannot
guarantee to A that B will not lose the key between key establishment and key use. Thus it
would indeed seem that implicit key confirmation and explicit key confirmation are in practice
very similar.

If both implicit key authentication and (implicit or explicit) key confirmation (of B to A) are
provided, then the key establishment protocol is said to provide explicit key authentication (of B
to A). A key agreement protocol which provides explicit key authentication to both participating
entities is called an authenticated key agreement with key confirmation (AKC) protocol.

In addition to implicit key authentication and key confirmation, a number of other desirable
security attributes of key agreement protocols have been identified including known-key security,
forward secrecy, key-compromise impersonation, and unknown key-share. These are typically
properties possessed by face-to-face key establishment which may be more or less important
when a key establishment protocol is used to provide security in real-life applications.

An unknown key-share (UKS) attack on an AK or AKC protocol is an attack whereby an
entity A ends up believing she shares a key with B, and although this is in fact the case, B
mistakenly believes the key is instead shared with an entity E # A. The significance of UKS
attacks on AK and AKC protocols is further discussed in §3.

This paper presents some new on-line UKS attacks on STS-MAC, the variant of the station-
to-station (STS) [11] AKC protocol which uses a MAC to provide key confirmation. For an
extensive survey on key establishment, see Chapter 12 of [25]. For a recent survey on authenti-
cated Diffie-Hellman key agreement protocols, see [10]. Formal definitions of authenticated key
agreement can be found for the symmetric setting in [7] and for the asymmetric setting in [9].

The remainder of this paper is organized as follows. The STS protocol is described in §2. In
83 we present the new on-line UKS attacks on STS-MAC, and consider ways of preventing the
attacks. In §4, we examine the plausibility of an assumption regarding signature schemes that
is required in order for the attacks to succeed. §5 makes concluding remarks.

2 Description of STS

The station-to-station (STS) protocol [11] is a Diffie-Hellman-based AKC protocol that pur-
ports to provide both (mutual) implicit key authentication and (mutual) key confirmation, and
additionally appears to possess desirable security attributes such as forward secrecy and key-
compromise impersonation. The STS protocol, as described in [11], provides (explicit) key
confirmation by using the agreed key K in a symmetric-key encryption scheme; we call this pro-



tocol STS-ENC. A variant of STS mentioned in [11], which we call STS-MAC, provides (explicit)
key confirmation by using the agreed key K in a MAC algorithm.

STS-MAC may be preferred over STS-ENC in many practical scenarios because of existing
export or usage restrictions on secure encryption. Moreover, the use of encryption to provide
key confirmation in STS-ENC is questionable — traditionally the sole goal of encryption is to
provide confidentiality and if an encryption scheme is used to demonstrate possession of a key
then it is shown by decryption, not by encryption. One advantage of STS-ENC over STS-MAC
is that the former can facilitate the provision of anonymity.

Many protocols related to STS have appeared in the literature (e.g., [5], [14], [18]). It should
be noted, however, that these protocols cannot be considered to be minor variants of STS — as
this paper shows, the former protocols have some security attributes that are lacking in STS.

The following notation is used throughout the paper.

Notation

A, B Honest entities.

E The adversary.

Sa A’s (private) signing key for a signature scheme S.

Py A’s (public) verification key for S.

Sa(M) A’s signature on a message M.

Certy4 A’s certificate containing A’s identifying information,
A’s public signature key P4, and possibly some other
information.

Ex (M) Encryption of M wusing a symmetric-key encryption

scheme with key K.
MACk (M) Message authentication code of M under key K.

G, a,n Diffie-Hellman parameters; « is an element of prime or-
der n in the finite multiplicative group G.

T4 A’s ephemeral Diffie-Hellman private key; 1 <ry <n —
1.

K Ephemeral Diffie-Hellman shared secret; K = o"A"B,

The two STS variants are presented below (see also [11, 25, 32]). In both descriptions, A is
called the initiator, while B is called the responder.

STS-MAC protocol.

The STS-MAC protocol is depicted below. Initiator A selects a random secret integer 74,
1 <74 <n-1, and sends to B the message (1). Upon receiving (1), B selects a random secret
integer rg, 1 < rp < n — 1, computes the shared secret K = (a"4)"5, and sends message (2) to
A. Upon receiving (2), A uses Certp to verify the authenticity of B’s signing key Pg, verifies
B’s signature on the message (a"8, a"4), computes the shared secret K = (a"5)"4, and verifies
the MAC on Sg(a"?,a"4). A then sends message (3) to B. Upon receipt of (3), B uses Certy
to verify the authenticity of A’s signing key Py, verifies A’s signature on the message (a"4, a"5),



and verifies the MAC on S4(a”4,a’8). If at any stage a check or verification performed by A
or B fails, then that entity terminates the protocol run, and rejects.

(1) A—B A, a4
(2) A« B Certp, a'8, Sp(a"8,a"4), MACk (Sp(a’B, a"4))
3) A—B Certa, Sa(a™,a"8), MACk (Sa(a™, a"B))

STS-ENC protocol.

The STS-ENC protocol is given below. For the sake of brevity, the checks that should be
performed by A and B are henceforth omitted.

(1) A—B A, a4
(2) A« B Certp, a"8, Ex(Sp(a’B, a"4))
3) A—B Certa, Ex(Sa(a™,a’8))

3 Unknown key-share attacks

An unknown key-share (UKS) attack on a key agreement protocol is an attack whereby an entity
A ends up believing she shares a key with B, and although this is in fact the case, B mistakenly
believes the key is instead shared with an entity £ # A. In this scenario, we say that B has
been led to false beliefs. If B is the protocol’s initiator, then the attack is called a UKS attack
against the initiator. Otherwise, the attack is called a UKS attack against the responder.

It is important to note that if an AK or AKC protocol succumbs to a UKS attack in which
E is a dishonest entity (this is the case with the attacks presented in this paper), then this
does not contradict the implicit key authentication property of the protocol — by definition,
the provision of implicit key authentication is only considered in the case where B engages in
the protocol with an honest entity (which F isn’t).

AN ATTACK SCENARIO. A hypothetical scenario where a UKS attack can have damaging con-
sequences is the following; this scenario was first described in [11]. Suppose that B is a bank
branch and A is an account holder. Certificates are issued by the bank headquarters and within
each certificate is the account information of the holder. Suppose that the protocol for electronic
deposit of funds is to exchange a key with a bank branch via an AKC protocol. At the conclu-
sion of the protocol run, encrypted funds are deposited to the account number in the certificate.
Suppose that no further authentication is done in the encrypted deposit message (which might
be the case to save bandwidth). If the UKS attack mentioned above is successfully launched
then the deposit will be made to E’s account instead of A’s account.

ANOTHER ATTACK SCENARIO. Another scenario where a UKS attack can be damaging is the fol-
lowing. Suppose that B controls access to a suite of sensitive applications (e.g. salary databases).
Each application has a password associated with it. The password is chosen and securely dis-
tributed by a CA to B and to all entities entitled to access that application. The CA also
certifies public keys of all potential users of one (or more) of the applications. A user A gains
access to an application by supplying to B the password that is specific to that application. This
can be done securely as follows. When A wants to gain access to the application, she and B
engage in a single run of an AKC protocol to establish shared keys K; and K, (K; and K, are



derived from the shared secret established). A then authenticates and encrypts the password
using the keys and sends the result to B. B checks the encrypted authenticated password and
supplies access to A. Once access has been granted, the application establishes new keys with
A to secure the subsequent use of the application.

If the AKC protocol does not provide unknown key-share, an active adversary F can induce
B into believing that he shares the keys K; and K, with F, while A correctly believes that she
shares the keys with B. E may then use the encrypted authenticated password sent by A to
gain access to the application.

SIGNIFICANCE OF UKS ATTACKS. The importance of preventing UKS attacks has been debated
in the literature. It is interesting to note that prevention of UKS attacks was one of the original
design principles of STS [11]. Here we make two observations about the relevance of UKS
attacks. First, notice that traditional, face-to-face key establishment is not susceptible to UKS
attacks. Therefore anyone implementing a key establishment protocol that does not prevent
UKS attacks as a drop-in replacement for face-to-face key establishment must check whether
UKS attacks represent a security concern in the application. Second, notice that a UKS attack
on an AKC protocol is more serious than a UKS attack on an AK protocol (which does not
provide key confirmation). As stated in [9], keys established using AK protocols should be
confirmed prior to cryptographic use. Indeed, some standards such as [4] take the conservative
approach of mandating key confirmation of keys agreed in an AK protocol. If appropriate key
confirmation is subsequently provided, then the attempt at a UKS attack will be detected. For
this reason, the above hypothetical banking scenario (in particular, the assumption that no
further authentication is performed after termination of the key agreement protocol) is realistic
if an AKC protocol is used (since key confirmation has already been provided), and unrealistic
if an AK protocol is used (since key confirmation has not yet been provided).

The remainder of this section discusses UKS attacks on STS-MAC and STS-ENC. §3.1
describes well-known public key substitution UKS attacks (for example, see [24, 25]). These
attacks can be prevented if a CA checks possession of private keys during the certification
process. §3.2 presents new on-line UKS attacks on STS-MAC that are not prevented simply by
checking knowledge of private keys during certification. It suggests other methods which may be
used to prevent the new attacks. The attacks are similar in spirit to Kaliski’s recent attack [20]
on the AK protocol of [21] — however the attacks we present are more damaging because, unlike
Kaliski’s attack, they are not prevented by appropriate key confirmation. Finally, in §3.3 we
consider possible UKS attacks on STS-ENC which may not be prevented by checking knowledge
of private keys during certification. The attacks in §3.3 are considerably more far-fetched than
the attacks in §3.2, but they demonstrate the value of public-key validation and formal protocol
analysis.

3.1 Public key substitution UKS attacks

This section describes well-known public key substitution UKS attacks on STS-MAC and STS-
ENC.



Attack against the responder.

In this UKS attack against the responder, the adversary F registers A’s public key P4 as its
own; i.e., Pg = P4. When A sends B message (1), E intercepts it and replaces the identity A
with E. E then passes message (2) from B to A unchanged. Finally E intercepts message (3),
and replaces Certy with Certg. Since P4 = Pg, we have Ss(a’4,a"8) = Sg(a™, a"8). Hence
B accepts the key K and believes that K is shared with E, while in fact it is shared with A.
Note that E does not learn the value of K. The attack is depicted below. The notation A — B
means that A transmitted a message intended for B, which was intercepted by the adversary
and not delivered to B.

(1) A—B A, a4

(1) E—B E, o'

(2) E+ B Certg, a"8, Sg(a"8,a"4), MACk (Sp(a'B,a"4))
(2)) A« F Certg, a"8, Sg(a"8,a"4), MACk (Sp(a'B,a"))
3) A—B Certa, Sa(a™,a"8), MACk (Sa(a™, a"B))

(3)) E—B Certg, Sa(a"™,a"8), MACk (Sa(a", a"B))

Attack against the initiator.

E can similarly launch a UKS attack against the initiator A by registering B’s public Pg as its
own. The attack is depicted below.

(1) A—FE A, a4

(1) E—B A, a4

(2) A«B Certg, a"8, Sg(a"8,a"4), MACk (Sp(a'B,a"))
(2)) A« F Certg, a"8, Sg(a’8,a"4), MACk (Sp(a"?,a"4))
3) A—FE Certa, Sa(a™,a"8), MACk (Sa(a™, a"8))

(3)) E—B Certa, Sa(a™,a"8), MACk (Sa(a™, a"B))

Preventing the attacks.

Both these public key substitution attacks are well-known and are usually prevented by requiring
that entities prove to the certificate-issuing authority possession of the private keys corresponding
to their public keys during the certification process. The attacks can also be launched against
STS-ENC; it this case, an alternate way to prevent the attacks is to encrypt certificates using
the shared key K.

3.2 On-line UKS attacks on STS-MAC

This section describes the new on-line UKS attacks on STS-MAC. The following assumptions
are made in order for the attacks to be effective.

1. The signature scheme S used in STS has the following duplicate-signature key selection
property. Suppose that P4 (A’s public key) and A’s signature s4 on a message M are
known. Then the adversary is able to select a key pair (Pg, Sg) with respect to which s4



is also E’s signature on the message M. The plausibility of this assumption is examined in
84, where it is shown that the RSA, Rabin, ElGamal, DSA and ECDSA signature schemes
all possess the duplicate-signature key selection property in certain situations.

2. FE is able to get its public key certified during a run of the STS protocol. This assumption
is plausible, for instance, in situations where delays in the transmission of messages are
normal, and where the CA is on-line.

Attack against the responder.

This new UKS attack on STS-MAC is similar to the public key substitution attack against the
responder in §3.1. After A sends message (3), E intercepts it and selects a key pair (Pg, Sg)
for the employed signature scheme such that Sg(a™,a"8) = Sa(a"4,a"8). E then obtains a
certificate Certg for Pg, and transmits message (3’) to B.

Attack against the initiator.

This new UKS attack on STS-MAC is similar to the public key substitution attack against the
initiator in §3.1. After B sends message (2), E intercepts it and selects a key pair (Pg, Sg)
for the employed signature scheme such that Sg(a"?,a"4) = Sp(a’?,a"4). E then obtains a
certificate Certg for Pg, and transmits message (2’) to A.

Preventing the attacks.

In the on-line UKS attacks, the adversary knows the private key Sg corresponding to its chosen
public key Pg. Hence, unlike the case of the public key substitution attacks, the on-line attacks
cannot be prevented by requiring that entities prove to the certificate-issuing authority possession
of the private keys corresponding to their public keys during the certification process.

The following outlines some measures that can be taken to prevent the on-line UKS attacks

on STS-MAC.

1. If A sends its certificate Certy in flow (1) rather than in flow (3), then the on-line UKS
attack against the responder cannot be launched; however the on-line UKS attack against
the initiator still succeeds.

2. If certificates are exchanged a priori, i.e., prior to the protocol run, then the on-line UKS
attacks fail. A priori exchanges of certificates may be undesirable in practice because it
increases the number of protocol flows.

3. Including the identities of the sender and intended receiver as well as the flow number! in
the messages being signed prevents the on-line UKS attacks. Inclusion of the flow number
and the identity of the message sender may help guard against attacks yet to be discov-
ered. (See [26] for an example of how inclusion of flow numbers can help guard against

'In this paper, we assume that message fields such as flow numbers, identities, and group elements, are
represented using fixed-length encodings and concatenated. Otherwise, some other unique prefix-free encoding

such as ASN.1 DER [15, 16] should be used.



certain attacks on entity authentication mechanisms.) These modifications add negligible
computational overhead to the protocol and follow the generic philosophy expounded in
[9] and [21]. The revised protocol is shown below.
(1) A—B A, a4
(2) A+ B Certp, a"8, Sp(2, B, A,a"B, a"4),
MACk(SB(2, B, 4,a"8,a™))
3) A—B Certa, Sa(3,4,B,a™,a"8), MACk(S4(3, 4, B,a™, a"?))

4. In the original STS-MAC protocol and the modification presented in item 3 above, the
agreed key K is used as the MAC key for the purpose of providing ezplicit key confirma-
tion. A passive adversary now has some information about K — the MAC of a known
message under K. The adversary can use this to distinguish K from a key selected uni-
formly at random from the key space?. The elegant general principle that in the face of a
computationally bounded adversary a computationally indistinguishable key can later be
used in place of a traditional face-to-face secret key anywhere without sacrificing security
can therefore not be applied (and security must be analyzed on a case-by-case basis). An-
other drawback of providing explicit key confirmation in this way is that the agreed key
K may be subsequently used with a different cryptographic mechanism than the MAC
algorithm — this violates a fundamental cryptographic principle that a key should not be
used for more than one purpose.

An improvement, therefore, is to provide implicit, rather than explicit, key confirmation.
Two keys K and K’ are derived from a"4"2 using a cryptographic hash function H. In
practice, this can be achieved by setting K| K’ = H(a"4"?), or K = H(01,a"4"5) and
K' = H(10,a"4"8). K’ is used as the MAC key for the session, while K is used as the
agreed session key. The revised protocol is depicted below.

(1) A—B A, a4

(2) A+ B Certp, a"8, Sp(2, B, A,a"B, a"4),

MACK/(SB(Q, B,A "B, arA))
3) A—B Certa, Sa(3,4,B,a™,a"8), MACk/(S4(3, 4, B,a"4, a"B))

We imagine that this protocol (and also the protocol in item 6 below) can be analyzed by
modelling the hash function H as a random oracle [6].

5. Instead of including the identities of the entities in the signed message, one could include

them in the key derivation function, whose purpose is to derive the shared key from the
shared secret a"4"B. In the protocol of item 3, the shared secret key would be K =
H(a™4™8, A, B), while in the 2 protocols of item 4, the shared keys would be (i) K||K' =
H(a™™8 A, B) and (ii) K' = H(01,a"4"5, A, B) and K = H(10,a"4"5, A, B).
However, key derivation functions have not been well-studied by the cryptographic commu-
nity. In particular, the desirable security properties of a key derivation function have not
yet been specified. For this reason, the protocols presented in items 3 and 4 are preferred
over the variants which include identities in the key derivation function.

6. The protocols in item 4 provide implicit key confirmation. While the assurance that the
other entity has actually computed the shared key K is not provided, each entity does

2The key space here is K ={a' : 1<i<n—1}.



get the assurance that the other has computed the shared secret a"4"8. Implicit key
confirmation is still provided (to a somewhat lesser degree) if the MACs are not included
in the flows. The revised protocol is shown below:

(1) A—B A, a4
(2) A+ B Certp, a"8, Sp(2, B, A,a"F, a"4)
3) A—B Certa, Sa(3,4,B,a™,a’8)

7. ISO 11770-3 has one variant each of the STS-ENC and STS-MAC protocols — these are
included as “Key agreement mechanism 7” in [18]. Both these variants resist the on-line

UKS attacks. The ISO variant of STS-MAC, which we call ISO-STS-MAC, is the following:

(1) A—B A, a4
(2) A+ B Certp, a"8, Sp(a’?, a4, A), MACk (a5, a4, A)
3) A—B Certa, Sa(a"™, a8, B), MACg (a4, a"8, B)

Notice that, unlike the original description of STS-MAC, identities of the intended recipi-
ents are included in the signatures in ISO-STS-MAC. This was apparently done in order
to be conformant with the entity authentication mechanisms in ISO 9798-3 [17], rather
than because of a security concern with STS without the inclusion of identities. Another
difference between ISO-STS-MAC and STS-MAC is that in the former the MAC algorithm

is applied to the message that is signed, rather than to the signature of the message.

We note that Bellare, Canetti and Krawczyk [5] have recently provided a model and
security definitions under which ISO-STS-MAC without the inclusion of the MACs is
provably secure. How their model compares with the model of [9] is not entirely clear.

3.3 Other UKS attacks

The on-line UKS attacks of §3.2 cannot, in general, be launched on STS-ENC because the sig-
natures S4(a"™,a"8) and Sp(a’B,a’4) are not known by the adversary. Is it possible to extend
the attacks to provide UKS attacks on STS-ENC that cannot be prevented by checking knowl-
edge of private keys during certification? This section suggests a possible (although unlikely)
scenario in which such (off-line) attacks on STS-ENC (and STS-MAC) may be successful. The
attack illustrates two points:

1. A complete description of STS-ENC should include a complete specification of the under-
lying symmetric-key encryption and signature schemes, together with a statement of the
security properties they are assumed to possess; and

2. Performing public-key validation [19] of signature keys is a sensible measure to take. (Ra-
tionale for performing key validation of public keys for use in Diffie-Hellman-based key
agreement protocols is provided in [23].)

The attack is similar to the attack presented in §3.2, but relies on the following assumption
on the signature scheme: E is able to certify a key pair (Pg, Sg) such that A’s signature on
any message M is also valid as E’s signature on message M. Note that deterministic signature
schemes cannot possess this property and be secure, since F knows Sg and can therefore compute



A’s signatures using Sg. However it is possible that some probabilistic signature schemes possess
this property. This is illustrated by the following example.

Suppose that the underlying signature scheme is the ElGamal signature scheme (see §4.3).
Suppose that entities select their own domain parameters p and g, as may be the case in high
security applications. Suppose further that when certifying an entity E’s public key Py =
(p,9,y) (where y = ¢° (mod p) and e is E’s private key), the CA does not perform public-
key validation; that is, the CA does not verify that p, g and y possess the requisite arithmetic
properties — that p is prime, g is a generator of Z;, and 1 < y < p — 1. Finally, suppose that
the CA verifies that F possesses the private key corresponding to its public key by asking E to
sign a challenge message.

If a dishonest entity E selects g = 0 (which is not a generator of Z;), then y = 0. In this
case, every pair of integers (r,s), where 1 <r <p—1and 1 < s < p— 2, is a valid signature
for E on any message M since the ElGamal signature verification equation (see §4.3) ¢™ = y"r*
(mod p) is satisfied. In particular, if the CA does not validate E’s public key, then it will accept
E’s proof of possession of its private key.

Having obtained a certificate Certg of such an invalid public key Pz = (p,0,0) (where the
prime p is greater than the prime moduli of A and B), E can now launch UKS attacks against
the responser or the initiator in both STS-ENC and STS-MAC in exactly the same way as
described in §3.1. For example, in the attack against the initiator, F replaces A’s identity with
its own identity in flow (1), and then replaces Certs with Certg in flow (3). Note that these
are not on-line attacks since E can get its public key certified in advance of the attack. Note
also that these attacks are different from the public key substitution attacks of §3.1, because
in the former F has indeed demonstrated possession of its private key to the CA during the
certification process.

As precautionary measures, we recommend that public-key validation of signature keys be
performed, and that STS-ENC be modified so that either the flow number and identities of
the sender and intended recipient are included in the signed message® or that the identities be
included in the key derivation function (as in item 5 in §3.2).

4 Duplicate-signature key selection

This section examines whether commonly used signature schemes possess the duplicate-signature
key selection property that is required in §3.2: given A’s public key P, for a signature scheme
S, and given A’s signature s4 on a message M, can an adversary select a key pair (Pg, Sg)
for S such that s4 is also E’s signature on the message M7 We demonstrate that, in certain
circumstances, the RSA [31], Rabin [30], ElGamal [12], DSA [1, 27], and ECDSA [3] signature
schemes all possess this property. In the RSA scheme, it is assumed that each entity is permitted
to select its own encryption exponent e. In the ElGamal, DSA and ECDSA schemes, it is
assumed that entities are permitted to select their own domain parameters; this is what might
be done in high security applications.

It must be emphasized that possession of the duplicate-signature key selection property does

3The resulting revised protocols are the same as the ones presented in items 3 and 4 in §3.2 with the data

(54(m),MACk(S4(m))) replaced by Ex(Sa(m)), and (Sp(m),MACk(Sg(m))) replaced by Ex(Sp(m)).
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not constitute a weakness of the signature scheme — the goal of a signature scheme is to be
existentially unforgeable against an adaptive chosen-message attack [13].

In the following, H denotes a cryptographic hash function such as SHA-1 [28].

4.1 RSA

Key pair: A’s public key is P4 = (N, E'), where N is a product of two distinct primes P and
Q,and 1 < E < &, ged(E,®) = 1, where & = (P — 1)(Q — 1). A’s private key is D, where
l1<D<®and ED=1 (mod ®).

Signature generation: To sign a message M, A computes m = H(M) and s = mP mod N.
A’s signature on M is s. Here, H may also incorporate a message formatting procedure such as

the ones specified in the ANSI X9.31 [2], FDH [8] and PSS [8] variants of RSA.

Signature verification: Given an authentic copy of A’s public key, one can verify A’s signature
s on M by computing m = H(M), and verifying that s =m (mod N).
Adversary’s actions: Given A’s public key P4 and A’s signature s on M, F does the following.

1. Compute m = H(M).
2. Select a prime p such that:

(a) p— 1 is smooth; and

(b) s and m are both generators of Z;.

3. Select a prime ¢ such that:

4. Since p — 1 is smooth, E can use the Pohlig-Hellman algorithm [29] to efficiently find an
integer 1 such that s"* =m (mod p).

5. Similarly, since ¢ — 1 is smooth, F can efficiently find an integer z, such that s*2 = m

(mod gq).
6. Compute n =pg, ¢ = (p—1)(¢g— 1), and A = ¢/2.

7. Find the unique integer e, 1 < e < A, such that e = #; (mod (p — 1)) and e = 2
(mod (¢ — 1)). This can be done by first solving the congruence

tp—1)/2= (25 — 21)/2 (mod (¢ 1)/2)
for ¢ (note that 5 — 2 is indeed even), and then setting e = 21 +t(p—1) mod A. Note also

that since m is a generator of Z;, we have ged(zy,p — 1) = 1; similarly ged(22,¢ — 1) = 1.
If follows that ged(e, ¢) = 1.
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8. Compute an integer d, 1 < d < ¢, such that ed =1 (mod ¢).

9. E forms Pg = (n, e); E’s private key is d.

Observe that s is also E’s signature on M since

whence

s¢ = st mod (P~ = 51 = 1 (mod p)
s¢ = st modaml) = % = 1 (mod g),
s°=m (mod n).

Remarks

1. The following is a heuristic analysis of the expected number of candidate p’s and ¢’s that

are chosen before primes satisfying the conditions in steps 2 and 3 are found.

Suppose that the desired bitlength of both p and ¢ is k. Candidates p and ¢ can be
selected by first choosing p — 1 and ¢ — 1 to be products of small prime powers (thus
ensuring conditions 2(a) and 3(b)); the primes occurring in the two products should be
pairwise distinct, except for a 2 which occurs exactly once in each product (this ensures
that ged(p — 1,¢ — 1) = 2). The candidate p is then subjected to a primality test. By
the prime number theorem [25, Fact 2.95], the expected number of trials before a prime
p is obtained is (%ln 2)k. Given that p is prime, the probability that both m and s are
generators of Z; is (see [25, Fact 2.102])

(55 < (wmpn)

If either m or s does not generate Z;, then another candidate p is selected. Hence, the
expected number of trials before an appropriate p is found is

(% In 2) k(6Inln(p — 1))° = O(k(In k)?).

It follows that the expected number of candidates p and ¢ before appropriates primes are

found is also O(k(Ink)?).

. Observe that (n, e) is a valid RSA public key, and that E knows the corresponding private
key d.

. To reduce the amount of on-line work required, the adversary could use A’s public key to
precompute several candidate pairs of primes p and ¢ which satisfy conditions 2(a), 3(a),
3(b), and 3(c). Subsequently, when the adversary sees A’s signature s on M, it can choose
a precomputed pair of primes which also satisfy conditions 2(b) and 3(d).
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4.2 Rabin

Key pair: A’s public key is P4 — N, where N is a product of two distinct primes P and Q.
A’s private key is (P, Q).

Signature generation: To sign a message M, A computes m = H(M), and finds a square root
s of m modulo N: s> = m mod N. A’s signature on M is s. (If m is not a quadratic residue
modulo N, then m should be adjusted in a predetermined way so that the result is one.)

Signature verification: Given an authentic copy of A’s public key, one can verify A’s signature
s on M by computing m = H(M), and verifying that s2 =m (mod N).
Adversary’s actions: Given A’s public key P4 and A’s signature s on M, E computes n =

(s2 — m)/N and forms Py = n. Observe that s is also E’s signature on M since s> = m

(mod n).

Remarks
1. The bitlength of n is expected to be the same as the bitlength of V.

2. n is most likely not the product of two distinct primes, and hence is not a valid Rabin
public key. (Assuming that n is a random k-bit integer, the expected total number of
prime factors of n is approximately In k; [25, Fact 3.7(iii)].) However, it is difficult, in
general, to test whether a composite integer is a product is of two distinct primes; hence
Rabin public-key validation is usually not performed in practice.

3. Assuming that n is a random k-bit integer, the probability that the bitlength of the second-
largest prime factor of n is < 0.22k is about % [25, Fact 3.7(ii)]. Thus, for example, if
512-bit moduli are being used, then the probability that the bitlength of the second-largest
prime factor of n is < 113 is about % Such n can be readily factored with the elliptic
curve factoring algorithm [22]. Given the prime factorization of n, F can hope to convince
the CA that it knows the corresponding private key (even though one may not exist — n
may not be a product of 2 distinct primes), by signing (computing square roots modulo
n, as with the Rabin scheme) a message of the CA’s choice.

4.3 ElGamal

Domain parameters: A safe prime p (i.e., ¢ := (p — 1)/2 is prime), and a generator g of Z,.
Key pair: A’s private key is an integer a, 1 < a < p—2. A’s public key is P4 = (p, 9,y), where
y = ¢° mod p.

Signature generation: To sign a message M, A selects a random integer k, 1 < k < p — 2,
such that ged(k,p — 1) = 1, and computes m = H(M), r = g" mod p, and s = k™1 (m —
ar) mod (p — 1). A’s signature on M is (r, s).

Signature verification: Given an authentic copy of A’s public key, one can verify A’s signature
(r,s) on M by computing m = H(M), and verifying that ¢" = y"r* (mod p).

Adversary’s actions: Given A’s public key P4 and A’s signature (r,s) on M, E does the
following. If ged(s,p—1) # 1 or if ged(m, 7) = 2 or ¢, then F terminates with failure. Otherwise,
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E selects an arbitrary integer ¢, 1 < ¢ < p— 2, such that ged(¢,p—1) =1, wheret =m—cr. E
then computes g = (7’3)’5_1 mod (p=1) mod p and forms Pg = (p,,7), where § = §° mod p.

Observe that (r, s) is also E’s signature on M since

y(—m)yrrs = y—(m—cr)rs (rs)—t_lt mod (p—l)rs =1 (mod p)

Remarks.

The condition ged(s,p — 1) = 1 ensures that r°, and hence also g, is a generator of Z;. The
condition ged(m, ) # 2, ¢ ensures that there exists a ¢ for which ged (¢, p—1) = 1; it also implies
that a non-negligible proportion of all ¢’s satisfy ged(¢,p — 1) = 1. If we make the heuristic
assumption that », s and m are distributed uniformly at random from [1,p — 1], then we see
that the success probability of the adversary is about g.

4.4 DSA

Domain parameters: Primes p and ¢ such that ¢ divides p — 1, and an element g € Z; of
order ¢q. Typically p has bitlength 1024 and ¢ has bitlength 160.

Key pair: A’s private key is an integer a, 1 < a < ¢ — 1. A’s public key is P4 = (p,¢,9,9),
where y = ¢ mod p.

Signature generation: To sign a message M, A selects a random integer k € [1,¢ — 1], and
computes m = H(M), r = (¢* mod p) mod ¢, and s = k™1 (m + ar) mod ¢q. A’s signature on M
is (r, s).

Signature verification: Given an authentic copy of A’s public key, one can verify A’s signature
(r,s) on M by computing m = H(M), u; = s"!m mod ¢, u, = s7'r mod ¢, and verifying that
r = (g™ y"? mod p) mod q.

Adversary’s actions: Given A’s public key P4 and A’s signature (r,s) on M, E selects

a random integer ¢ € [1,q — 1] such that ¢ := ((u; + cus) modgq) # 0. E then computes
r1 = g“y“ modp and g = ri_l medd 11od p, and forms Py = (p,q,9,y) where ¥ = g° mod p.
Note that ord(g) = ¢, so Pg is a valid DSA public key.

Observe that (r, s) is also E’s signature on M since

UL U2 — U1 Cur

gy =7 =7 =r (mod p),

whence r = (g“'y*2 mod p) mod gq.

4.5 ECDSA

ECDSA is the elliptic curve analogue of the DSA and is specified in [3].

Domain parameters: An elliptic curve E defined over the finite field F, with #E(F;) = nh
and n prime, and a point P € E(F,) of order n.

Key pair: A’s private key is an integer a, 1 < a <n—1. A’s public key is P4 = (p, E,n, P, Q),
where ) = aP.
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Signature generation: To sign a message M, A selects a random integer k, 1 < k < n — 1,
and computes m = H(M), R = kP, r = z(R) mod n, and s = k~!(m + ar) mod n. Here, z(R)
denotes the x-coordinate of the point R. A’s signature on M is (r,s).

Signature verification: Given an authentic copy of A’s public key, one can verify A’s signature
(r,s) on M by computingm = H(M), R = s 'mP+s71rQ, and verifying that r = z(R) mod n.
Adversary’s actions: Given A’s public key P4 and A’s signature (r,s) on M, E selects an
arbitrary integer ¢, 1 < ¢ < n—1, such that ¢ := ((s7!m+s~1rc) mod n) # 0. E then computes
R=35"1mP+ s 1rQ and P = (t"! mod n)R, and forms Pg = (p, E,n, P,Q), where Q = cP.
Note that ord(P) = n, so Pg is a valid ECDSA public key.

Observe that (r, s) is also E’s signature on M since
s'mP+s'rQ = (s"'m+s'rc)P=tP =R, (1)

whence 7 = z(R) mod n.

Remarks.

E’s domain parameters are the same as A’s, with the exception of the base point P. If the elliptic
curve was chosen verifiably at random using a canonical seeded hash function (e.g., as specified
in ANSI X9.62 [3]), then E can use the same (non-secret) seed as selected by A to demonstrate
to the CA that the curve was indeed selected verifiably at random. There is no requirement
in ANSI X9.62 for generating the base point verifiably at random. Hence, performing domain
parameter validation as specified in ANSI X9.62 does not foil the adversary.

5 Conclusions

This paper presented some new unknown key-share attacks on the STS-MAC key agreement
protocol. The attacks are a concern in practice since STS-MAC purports to provide both
implicit key authentication and key confirmation. There are various ways in which the attacks
can be circumvented. Our preferred way is to include flow numbers and identities in the messages
being signed, and to separate keys used to provide key confirmation from derived shared secret
keys.
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