
ISO 9796-1 and the new forgery strategy
(Working Draft)

Don Coppersmith Shai Halevi Charanjit Jutla

IBM
August 23, 1999

Abstract

In this note we show how the new forgery strategy of Coron, Naccache and Stern can be
modified to break the ISO 9796-1 standard for RSA and Rabin digital signatures.

1 ISO 9796-1 and the attack of Coron et al.

ISO 9796-1 [4] is a standard for RSA (and Rabin) signatures [7, 6]. In particular, it was designed
to resist attacks that exploit the multiplicative structure underlying these cryptosystem. See [5] for
a survey of these attacks, and [3] for the reasoning behind the ISO 9796-1 standard.

Recently, Coron, Naccache and Stern described in [1] a “new signature forgery strategy”, which
is a sophisticated variant of the Desmedt-Odlyzko multiplicative attack from [2]. In their paper,
Coron et al. described an attack against a slight modification of ISO 9796-1, but this attack does
not work “right out of the box” against the actual standard. In this note we show how a small
modification to the technique in [1] can be applied to break the actual ISO 9796-1 standard. We
start by quickly reviewing the format that was considered by Coron et al. and the attack against it,
as well as the actual format used in ISO 9796-1.

1.1 The “new forgery strategy”

The ISO 9796-1 standard (and the variant the was considered by Coron at al.) specifies how a
message m is encoded for a signature before applying the RSA operation to it. It uses a fixed
nonlinear permutation s�x� mapping 4 bits to 4 bits. Below we let �s�x� be the result of setting the
most significant bit of s�x� to ‘1’ (where x is a 4-bit nibble). That is, �s�x� � ���� OR s�x�. The
variant that was considered in [1] is as follows: Assume that the modulus length is ��z � � bit
(where z is even), and the message m is of length 	z bits. The message is encoded into a ��z-bit
integer by using an encoding function �, which is defined as

��m� � �s�m���� s�m���� m��� m���

s�m���� s�m���� m��� m���

� � �

1

s�m�� s�m�� m� m�

s�m�� s�m�� m� �

where mi is the i’th 4-bit nibble of m. To sign a message m, one needs to apply the RSA operation
to ��m�.

The Coron et al. attack against this signature scheme proceeds roughly as follows. They
consider 64-bit strings x of the form

x � s�a�� s�a�� a� a�

s�a�� s�a�� a� a�

s�a�� s�a�� a� a�

 � �

where a� � � � a� are any six nibbles, except that a� must be one of the eight nibbles for which s�a��
already has the most significant bit set to 1. Since x is short (only 64 bits), then there is a good
probability that it will be smooth (i.e., will have only “small” prime factors – say all smaller than

��). Then they set

� �
z����X
i��

��i

and consider the ��z-bit integers M � � � x, which is just z�
 repetitions of the string x. Since x
has the most significant bit set to 1 (because of the restriction on a�) and the least significant nibble
set to ’6’, then M is indeed a valid encoding of some message m. Namely, there exists a message
m (which can be easily recovered from M) such that ��m� � M .

The procedure above is repeated many times, with different x’es, so as to generate many valid
encodings Mi � � � xi for which xi is smooth. For example, if the smoothness bound that is
considered is
��, then the attack needs to collect about 6500 such Mi’s, since there are about 6500
primes smaller than
��. Once enough Mi’s are collected, one can find “homomorphic dependen-
cies” between these Mi’s, and use these dependencies to devise a signature on one of these Mi’s
from the signatures on the others. See [1] for more details on the attack.

Remark (off-line work). An interesting feature of the attack from [1], is that essentially all the
work is invested in finding the Mi’s, and this work can be done off-line, before even seeing the
RSA modulus. Once enough Mi’s are collected, they can be used against any RSA modulus of the
right length. The attack that we describe in this note enjoys the same feature. In the sequel we
refer to the Mi’s that are found in the off-line phase of the attack as “would be forgeries”.

1.2 The “real” ISO 9796-1 standard

The actual encoding function that is used in the ISO 9796-1 standard is slightly different than the
function � above. For the same setting of parameters (i.e., modulus of ��z � � bits and 	z-bit
messages), the encoding function – denoted �

ISO
– is defined as follows:

�
ISO

�m� � �s�m���� �s�m����m��� m���

s�m���� s�m����m��� m���

2

� � �
s�m�� s�m�� m� m�

s�m�� s�m�� m� �

where �s�x� denotes the nibble s�x�with the least significant bit flipped (i.e., �s�x� � s�x���, where
� denotes exclusive-or). Namely, for these parameters, the difference between ��m� and �

ISO
�m�

is that the lowest bit in the second-most-significant nibble of �
ISO

�m� is flipped. As before, to sign
a message m, one needs to apply the RSA operation to �

ISO
�m�.

One can see that now we cannot simply represent the encoding �
ISO

�m� as a product � � x with
�� x as above. Hence the attack must be modified to apply to this encoding function.

2 Modifying the attack

The modified attack is similar to the one from [1], except that it uses a slightly different structure
for � and x. In the original attack, the constant � consisted of several 1’s that were separated by as
many 0’s as there are bits in x. In the modified attack, we again have a constant � which consists
of a few 1’s separated by many 0’s, but this time there are fewer separating 0’s.

We start with an example. Consider a 64-bit integer x, which is represented as four 16-bit
words x � abcd (so a is the most-significant word of x, b is the second-most-significant, etc.).
Also, consider the 144-bit constant � � ���������, where again each digit represent a 16-bit
word. Now consider what happens when we multiply � � x. We have

� � x � a b c d
� � � � � � � �

a b c d
a b c d

a b c d
a b c e b c e b c d

where e � a � d (assuming that no carry is generated in the addition a � d). Notice that the
16-bit d appears only as the least-significant word of the result, and the 16-bit a appears only as
the most-significant word of the result. It is therefore possible to arrange it so that the form of the
words a� d be different than the form of the words b� c and e, and this could match the different
forms of the least- and most-significant words in the encoded message �

ISO
�m�.

More precisely, we consider three types of 16-bit words. For a 16-bit word x, we say that:

� x is a valid low word if it has the form x � s�u� s�v� v �, for some two nibbles u� v.

� x is a valid middle word if it has the form x � s�u� s�v� u v, for some two nibbles u� v.

� x is a valid high word if it has the form x � �s�u� �s�v� u v, for some two nibbles u� v.

We note that there are exactly 256 valid low words, 256 valid middle words, and 256 valid high
words (since in each case we can arbitrarily choose the nibbles u� v).

In the example above, we needed a to be a valid high word, d to be a valid low word, b and c to
be valid middle words, and we also needed e � a � d to be a valid middle word. In Appendix A

3

we list useful combinations of valid words for which the sum is also a valid word. We note the
following:

� There are 64 pairs x� y such that x is a valid high word, y is a valid low word, and z � x� y
is a valid middle word (this is what we needed for the example above). We call such a pair
�x� y� a high-low pair.

� There are 84 pairs x� y such that x is a valid high word, y is a valid middle word, and
z � x� y is a valid middle word. We call such a pair �x� y� a high-mid pair.

� There are 150 pairs x� y such that x is a valid middle word, y is a valid low word, and
z � x� y is a valid middle word. We call such a pair �x� y� a mid-low pair.

� There are 468 pairs x� y such that x is a valid middle word, y is a valid middle word, and
z � x� y is also a valid middle word. We call such a pair �x� y� a mid-mid pair.

We are now ready to present the attack. For clarity of presentation we start by presenting the attack
for the special cases where the modulus size is 1024+1 bits and 2048+1 bits. We later describe the
general case.

2.1 Moduli of size 1024+1 bits

When the modulus size is k � ��
 bits, we need to encode the messages as 1024-bit integers with
the high bit set to 1. The attack proceeds similarly to the example from above: We consider 64-bit
integers x � abcd, where a is a valid high-word, d is a valid low-word, and b� c and e � a� d are
valid middle words. There are 64 choices for the high-low pair �a� d� and 256 choices for each of
b� c, so there are total of
�� x’es of the right form. We then set

����� �
��X
i��

�	i � � ��� ��� � � � ��� ���� �z �
� followed by �� repetitions of ���
base ����

This gives us
M � ����� � x � a bce bce � � � bce� �z �

�� repetitions

bcd

which is a valid encoding of some message M � �
ISO

�m�, because of the way x was chosen. If
we set the smoothness bound of the attack to B �
��, then the 64-bit integer x has probability of
about
���� to be B-smooth, so we expect that there are about
�� �
���� �
���� x’es of the right
form which are B-smooth. Since there are only about 6500 primes smaller than
��, we have more
than enough smooth x’es to get the “homomorphic dependencies” that are needed for the attack.

The above attack has essentially the same complexity as the one that is described by Coron et
al. in [1, Section 4.1] (since it uses 64-bit integers x, just as it is done in the original attack). In
it reported in [1] that for smoothness bound of about
��, a single PC can prepare thousands of
“would be forgeries” in less than a day. Recall also that this work is all done off-line, and then
these “would-be forgeries” can be used against any RSA modulus of 1024+1 bits. After the off-line
work is done, the attack needs to collect about 3000 signatures, and then the actual forgeries can
be generated instantly.

4

2.2 Moduli of size 2048+1 bits

When the modulus size is k �
��� bits, we need to encode the messages as 2048-bit integers with
the high bit set to 1. Here we need to modify the attack a little, by changing the length of x and the
amount of “overlap” that is used in the product � � x. Specifically, we can work with 128-bit x’es,
x � abcdefgh, where a is a valid high-word, h is a valid low-word, and b� c� d� e� f� g and also
i � a � g and j � b � h are valid middle-words. This gives us 84 choices for the high-mid pair
�a� g�, 150 choices for the mid-low pair �b� h� and 256 choices for each of c� d� e� f , so we have
total of more than
�� choices for x. We set

����	 �
��X
i��

�i � � ������ � � � ������� �z �
�� repetitions

���

and so we get
M � ����	 � x � ab cdefij � � � cdefij� �z �

�� repetitions

cdefgh

which is again a valid encoding. Since x is a 128-bit integer, the probability that it is, say,
��-
smooth is about
�����. So we expect there to be about
�� �
����� �
�	 x’es of the right form
which are
��-smooth, and we only need about 	
��� �
�� of them to get the “homomorphic
dependencies” (since there are about 82000 primes smaller than
��).

Using the estimates from [1, Section 2], the complexity of finding a B-smooth, L-bit integer
x during the off-line phase of this attack is about CL�B � O

�
L
p
B

�
L� log�B�

�
. In our case we have

L � �
	� B �
�� so we get CL�B �
��. In the off-line phase of the attack we need to find about
82000 smooth x’es to get “homomorphic dependencies”, and then each additional smooth x would
give us another “would be forgery”. Hence we estimate that the complexity of the off-line phase is
about
�� to get the first “would be forgery”, and then
�� for each additional one. This is still well
below the complexity of, say, an exhaustive DES key search (and just as for DES key search, this
work can be done off-line and is easily parallelizable).

Once the off-line phase is over, the list of “would be forgeries” can be used against any RSA
modulus of 2048+1 bits. The attack needs to collect about 82000 signatures, and then the forgeries
can be produced almost instantly.

2.3 The general case

For a modulus whose size if ��z�� bits (for an even z), we need to encode the messages as ��z-bit
integers, which means that the encodings should have z 16-bit words. We write the integer z as
z � � �m� �, where �� ��m are all integers with �� � � � and m �
. For reasons that will soon
become clear, we try to get � � � as small as possible, while making sure that � � � is at least 2
or 3.

The attack then works with integers x of��� 16-bit words (which is why we want to minimize
� � �), and use “overlap” of � words in the product � � x. If we denote � � � � �, then we have
x � a� � � � a�, where a� is a valid high-word, a� is a valid low-word, and the other ai’s are valid
middle words (and we also need some of the sums to be valid middle words). We then set

���z �
m��X
i��

���i � � � �� � � � �� � � � � � � �� � �� �z �
m�� repetitions of �����
��� ��s followed by ��

5

When we multiply ���z � x we get

���z � x � a� �� a��� a� �� a� �� a�
� � � � � � �� � � � �� � �

a� �� a��� a� �� a� �� a�
a� �� a��� a� �� a� �� a�

� � � a� �� a�

hence we also need the sums �a� � a��� � � � � �a��� � a��� �a��� � a�� to be valid middle words.
If � � � (as in the case of 1025-bit moduli above), we have 64 choices for the high-low pair

�a�� a�� and 256 choices for each of the other ai’s, so we get total of �� �
���� choices for x.
If � �
 (as in the case of 2049-bit moduli above), we have 84 choices for the high-mid pair

�a�� a��, 150 choices for the mid-low pair �a���� a��, 468 choices for each of the mid-mid pairs
�a���� a���� � � � �a���� a��. Thus the total number of choices for x is 	� � �� � ��	��� �
���� .
(This is the reason that we want � � � to be at least 2 or 3.) For the attack to be successful, we
should set the parameters�� � so that there are enough smooth x’es to guarantee the “homomorphic
dependencies” that we need.

As another example for the general case, consider moduli of 768+1 bits. We need to encode
the messages as integers of 768 bits, or ��	��� � �	 words. We can write �	 � � � � �, so we
have � � � � � �. Hence we work with x’es of � � � 	 words (128 bits) and use an overlap of
3 words. For this case we have 	� � �� � ��	 �
�� 	
�	 choices for x. If pick the smoothness
bound to be
��, then the probability that x be smooth is about
�����, so we expect there to be
about
�� smooth x’es, and we only need about 	
��� �
�� of them to get the “homomorphic
dependencies”, since there are about 82000 primes smaller than
��. The complexity of this attack
is the same as for the �
��	 � ��-bit moduli.

2.4 Possible extensions

The attack that we described above was intended to works against moduli of size ��z�� bits for an
even integer z, but there are a few straightforward ways to extend the attack to handle other moduli
sizes. For example, for a modulus of size ��z-bits (with z even), we should encode messages as
integers with ��z � � bits, which we can view as z-word integers with the highest bit set to 0 and
the second-highest bit set to 1. To handle these integers, we re-define a valid high-word as a 16-bit
word of the form x � �s�u� �s�v� u v, for some two nibbles u� v, where �s�u� is the nibble s�u� with
the highest bit set to 0 and the second-highest bit set to 1. Although we did not check this, we
suspect that the modified definition of a valid high-word will not significantly change the number
of high-low and high-mid pairs, so the complexity of an attack against ��z-bit moduli should be
roughly the same as that of an attack against moduli of ��z � � bits.

Another extension of the attack is to consider also the cases where there are some carry bits
between the nibbles in the computation of��x. For example, for the case of � �
 (see Section 2.3)
we can have carry bits between the “overlap” words in the multiplication without effecting the
attack. We estimate that considering these carry bits can increase the number of possible x’es by
about a factor of
��� (since we can have x’s that cause any pattern of carry bits inside a string of
length � nibbles).

Yet another plausible extension is to handle the case where not only the first and last words of
the encoding have different formats, but also one other word in the middle. This is the case, for

6

example, when we encode a message m of length less than half the size of the modulus. In that
case, the form of the highest word would be x � �s�u� s�v� u v, the form of the lowest word would
be x � �s�u� s�v� v �, and there would be one other word somewhere in the middle of the form
x � s�u� �s�v� u v. In this case we may be able to modify � a little, so that the spacing of the 1’s is
not equal everywhere. For example, if we have x � abcd and � � ��������, we get

� � x � a b c d
� � � � � � � � �

a b c d
a b c d

a b c d
a b c e b c d a b c d

Now notice that the word e only appears once in the middle, and so we can arrange it so that it
would have a different form than the other words. This technique can potentially be used to find
more forgeries, or to reduce the complexity of the attack against certain moduli-lengths.

3 Conclusions

In this note we demonstrated that the ISO 9796-1 standard can be broken using a variant of the
Coron, Naccache and Stern attack from [1]. The estimated complexity of the new attack depends
heavily on the modulus length: for some lengths (e.g., 1024+1 bits) the attack can be easily carried
out on a single PC in less than a day, while for other lengths (e.g., 2048+1 bits) it has nearly the
same complexity as an exhaustive search for a DES key. Still, we stress that the attack is feasible
against all the moduli lengths that we considered. We also sketched a few ways in which this attack
can be generalized to work against other moduli lengths.

In light of this break, we believe that the standard needs to be modified. In our view, the
first step that should be taken is to re-examine the need for this mode of “hash-free encoding” for
signatures. An obvious disadvantage of this mode is that it gives an attacker quite a bit of control
over the encoded messages. Since the encoding rule is usually very “local” (i.e., each bit of m
effects only very few bits of ��m�), an attacker has an ample opportunity to play with m in order
to arrange that ��m� has some desired properties. Moreover, as opposed to the “full domain hash”
that can be analyzed (and proven secure) in the random-oracle model, there seems to be no hope
of getting similar results in the “hash free” case.

If it is decided to keep this “hash free” mode, we describe in Appendix B some possible modifi-
cations that can be made to the encoding function. In particular, we suggest to consider encodings
with “massive mask changes”, such as the functions �� and �� from Subsection B.1. (Similar
encodings were also suggested in [8].) These functions stay close to the original intent of ISO
9796-1, but at the same time they seem resistant to multiplicative attacks such as the ones in [1]
and in this note.

Acknowledgments. We thank Mike Matyas for encouraging us to work on these new attacks
and for several useful discussions. We also thank David Naccache for bringing the note [8] to our
attention.

7

References

[1] Jean-Sébastien Coron, David Naccache and Julien P. Stern. On the Security ofRSA Padding
In proceedings of Crypto’99. LNCS vol. 1666, pages 1–18, Springer, 1999.

[2] Y. Desment and A.Odlyzko. A chosen text attack on the RSA cryptosystem and some discrete
logarithm schemes. In Crypto’85, LNCS vol. 218, pp. 516-522. Springer-Verlag, 1986.

[3] L.C. Guillou and J.-J. Quisquater. Precautions Taken Against Various Potential Attacks in
ISO/IEC DIS 9796”. In EUROCRYPT’90, LNCS vol. 473, Pages 465–473. Springer-Verlag,
1990.

[4] ISO/IEC 9796-1, Information technology – Security techniques – Digital signature schemes
giving message recovery – Part 1: Mechanisms using redundancy.

[5] J.F. Misarsky. How (not) to design RSA signature schemes. In PKC’98, LNCS vol. 1431,
pp. 14-28. Springer-Verlag, 1998.

[6] M.O. Rabin. Digitized Signatures and public key functions as intractable as factoring.
MIT/LCS/TR-212, 1979.

[7] R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature and Public
Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120–126

[8] SC27N23xx: Report of the Ad-Hoc meeting on 9796 held at Gemplus, Paris, on May-14-
1999.

8

A Useful pairs for the attack

Here we list all the various types of pairs �x� y� of 16-bit words that we use in our attack (together
with their sum, z � x � y). All the constants in the tables below are in hexadecimal (base-16)
representation.

Table 1: High-Low pairs

x � 	f�� af�� 	f	� bfa� afd� b
�� d

� �
�� c
� d
�� �
f� a��

y � ���� ���� ����

�� ���� �d�� �ce� �d�� �d��
ce� �ce� �ba�
z � �
�� f
�� d
�� e
�� c
e� bfa� ef�� afd� cfe� ff�� afd� e��	

x � a�d
 ��f
 d�
� ���� 	�	� ��f� 		�� a	�� 			� b	a� a	d� 		
y � �ba� �ba�
�� ���
�� ��� ���� ��� ��� �
��
��� ��	�
z � f��	 d��	 fd�� dd�� add� ed�� �b�a fb�a db�a eb�a cbea e��b

x � �f d�
� ���� 	�	� ��f� ae�� aed� �ef� 	��	 	��	 ���	 b�a	
y � ��	�
�� ���
�� ��� �ba� �ba� �ba�
ba� �ad� �ba� �ad�
z � f��b f��c d��c a�dc e��c ea�d fa�d da�d acde ec�e ccee fc�e

x � a�d	 cc� 	c	� ba�a 	a�a �a�a 	a	a caea c�b c�eb ��fb b��c
y � �ad�

�

� ��� ��
�� ���
��� �ba� �ba� �ba� �f��
z � bcae f��f b�af fe�� de�� bea� cee� ee�� e��� d��� b�a� d�

x � a��c ��fc bb�d 	b�d �b�d 	b	d bbad �bfd cde cdee �dfe b��f
y � �f�� �e��
ce� �d��
d�� �ce� �ce�
ce� �ba� �ba� �ba� ���
z � ce
 e�
 e	�� a	d� c	e� f	�� d	�� c	e� e��� d��� b�a� f��

x � 	��f ���f 	�	f c�ef
y � ��
�� ���
���
z � d�� b�a c�e e��

9

Table 2: High-Mid pairs

x � bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa�
y �
e�� �ef�
��� ��f�
�
 �f

	�� �	f�
��� ��f�
�� ��f
z � ee�� de�� e��� d��� e�
 d�
 e	�� d	�� e��� d��� e�� d��

x � bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa�
y �

�� �
f�
f�� �ff�
��	 ��f	
d�� �df�
b�a �bfa
��b ��fb
z � e
�� d
�� ef�� df�� e��	 d��	 ed�� dd�� eb�a db�a e��b d��b

x � bfa� bfa� bfa� bfa� bfa� bfa� bfa� bfa� �
�� �
�� �
�� �
��
y �
��c ��fc
a�d �afd
c�e �cfe
��f ��ff ���
��� �ad
a�d
z � e��c d��c ea�d da�d ec�e dc�e e��f d��f d�
 ba
 dc�e bcae

x � ���
 ���
 ���
 ���
 b�a� b�a� b�a� b�a� b�a� b�a� b�a� b�a�
y � �

�
 ��b
��b
e�� �ef�
	�� �	f�
d�� �df�
��c ��fc
z � d��� b�a� da�d baad e	�� d	�� e
�� d
�� e��c d��c e��f d��f

x � ba ba ba ba b��� b��� b��� b��� c�� c�� c�� c��
y �
e�� �ef�
b�a �bfa �ba �b	a ��f ��	f �b�a �b	a ���f ��	f
z � e�� d�� e��f d��f fe�� bea� f�� b�a fe�� cee� f�� c�e

x � 	�	� 	�	� 	�	� 	�	� b�a� b�a� b�a� b�a� b�a	 b�a	 b�a	 b�a	
y � �b�a �ba ���f ��f
e�� �ef�
d�� �df�
e�� �ef�
f�� �ff�
z � bea� cee� b�a c�e e
�� d
�� e��f d��f e��	 d��	 e��f d��f

x � b�ab b�ab b�ab b�ab bbad bbad bbad bbad bdae bdae bdae bdae
y �
e�� �ef�
��� ��f�
e�� �ef�
�
 �f

e�� �ef�
��� ��f�
z � e��b d��b e��f d��f ea�d da�d e��f d��f ec�e dc�e e��f d��f

10

Table 3: Mid-Low pairs

x � e
� �e�� �e�
e�� �e	� �ef�
��� ��	� a�d� ��f� ��

y � ��� ��� ��� ��� ��� c��� cba� ba� ba� cba�
ba� �ba�
z � f
�� d
�� b
a� �
b� a
d� e
�� ef�� f
� ff�� df�� ��b	 ��c	

x � 	�
 	�
 ��
 �

�
 �	
 ba
 �c
 ad
 �f
 �	�� 	
�
y � �ba� ad�
ba� �ad� ad� �ad� �ad� ad� �ad� ad�
� �
�
z � a�d	 e��	 c�e	 �
	 	��	 ��	 f��	 d��	 b�a	 ��c	 	d�� �d��

x � �	� �		� �	b� �	b� �	c� �	f� ���� ���� 	��� ���� ��� ���
y � b
� b
� �
� 	��
� 	�� c
�� b�f�
��

��

�� �f�
z � fd�� bda� add� ed�� cde� �d�� fb�a eb�a db�a bbaa �bba �b�a

x �
���
��� ��	� ��	� b�a� ��b� ��f� ��� ��� 	�� ��� ��
y �
��
�f� c
�� f�f�
�f� �f� b�f� c
�� b�f�
��

��

��
z � �bca �ba cbea fb�a db�a bbaa cbea f��b e��b d��b b�ab ��bb

x � ��
��
�� ��	 ��	 b�a ��b ��f �
��

� �
� �
	�
y � �f�
��
�f� c
�� f�f�
�f� �f� b�f�
� �
� b
� b
�
z � ���b ��cb ��b c�eb f��b d��b b�ab c�eb 	��c ���c f��c b�ac

x � �
b� �
b� �
c� �
f� �f�� f
� 	f�� 	f�� �f�� �f�
f�� �f	�
y � �
� 	��
� 	��
ba� �ba� �ba� ad�
ba� �ad� ad� �ad�
z � a�dc e��c c�ec ���c �abd �acd aadd ea�d caed a
d 	a�d �ad

x � bfa� �fc� afd� �ff�
��	 ��		 a�d	 ��f	 d
� �d�� �d�
d��
y � �ad� ad� �ad� ad� cba� ba� ba� cba� ��� ��� ��� ���
z � fa�d da�d baad �acd ec�e c
e fc�e dc�e f��f d��f b�af ��bf

x � �d	� �df� �b�a b
a �ba �b	a db�a �bba �bca �bca �bfa ���b
y � ��� c��� ��� ���� b��� b��� �
�� ���� ��� �
�� �
��
d��
z � a�df e��f 	e�� �e�� fe�� bea� ee�� aed� cee� 	e��
e�� ��b�

x � ���b �
b 	��b ���b ��b
��b ��	b b�ab ��bb ��fb ���c �
c
y � ace� �d�� �d��
d�� �ce� �ce� ece� �ce� �ce� ace� �e��
e��
z � e��� ��c� a�d� c�e� ���� ��� f��� d��� b�a� c�e�

 	�

x � 	��c
��c
��c ��	c ��	c ��bc ��cc a�dc a�dc ��fc �a�d a
d
y � �e�� ce�� bd�� ce�� �d�� �e��
e�� �e�� �d�� bd�� �e��
e��
z � ��
 f�
 e�
 d�

 �c
 ad
 ce
 f�
 d�
 	
� 		��

x � 	a�d
a�d
a�d �a	d �a	d �abd �acd aadd aadd �afd �c�e �c�e
y � �e�� ce�� bd�� ce�� �d�� �e��
e�� �e�� �d�� bd��
d�� ace�
z � �	�� f	�� e	�� d	�� 	
� �	c� a	d� c	e� f	�� d	�� ��b� e���

x � c
e 	c�e �c�e �ce
c�e �c	e bcae �cbe �cfe ���f �
f ��f
y � �d�� �d��
d�� �ce� �ce� ece� �ce� �ce� ace� ��� ���� b���
z � ��c� a�d� c�e� ���� ��� f��� d��� b�a� c�e� 	�� ��� f��

x � ��	f d��f ��bf ��cf ��cf ��ff
y � b��� �
�� ���� ��� �
�� �
��
z � b�a e�� a�d c�e 	��
��

11

Table 4: Mid-Mid pairs (Part 1)

x � ���� ���� ���� ���� �
� �
� �
� �
� ���� ���� ���� ����
y �

 �c
 �
c ��cc ��
 �c
 ���c ��cc �

�
 ��c
��c
z � 		�� a	d� 	a�d aadd 		�� c	e� 	a�d caed d	�� b	a� da�d baad

x � ��� ��� ��� ���
���
���
���
��� ��c� ��c� ��c� ��c�
y � ��

�
 ���c
��c ��
 �
 ���c ��c ��

 ���c �
c
z � d	�� �	b� da�d �abd b	a� �	b� baad �abd a	d� c	e� aadd caed

x � ��
 ��
 ��
 ��

 ��
 ��
 ��
 ��

y � �
� ��c� �
c ��cc ���� ��c� ���c ��cc ���
��� ��c
��c
z � 		�� a	d� 	c�e acde 		�� c	e� 	c�e ccee d	�� b	a� dc�e bcae

x � �
 �
 �
 �

�

�

�

�
 �c
 �c
 �c
 �c

y � ����
��� ���c
��c ���� ��� ���c ��c ���� �
� ���c �
c
z � d	�� �	b� dc�e �cbe b	a� �	b� bcae �cbe a	d� c	e� acde ccee

x � ���� ���� ���� ���� ���� ���� ���� ���� �
� �
� �
� �
�
y � �
 ��c

� �
c� a
d �abd c
e �cbe ��� ��c �
�� �
c�
z � 	d�� add� 	b�a abda ���� a�d� ��
 ad
 	d�� cde� 	b�a cbea

x � �
� �
� �
� �
� �
� �
� �
� �
� 	��� 	��� 	��� 	���
y � �a�d �a�d �a	d �abd �c�e �c�e �c	e �cbe �ad
a�d �ce
c�e
z � ���� f��� ��b� c�e� ��
 f�
 �b
 ce
 d��� b�a� d�
 ba

x � ���� ���� ���� ���� ���� ���� ���� ���� ��� ��� ��� ���
y � ��
�� �
�

�� a
d �a	d c
e �c	e ���
�� �
��

��
z � dd�� bda� db�a bbaa f��� a�d� f�
 ad
 dd�� �db� db�a �bba

x � ��� ��� ��� ���
���
���
���
���
���
���
���
���
y � 	a�d
a�d 	c�e
c�e ��� �� �
�� �
� 	a�d �ad 	c�e �ce
z � d��� ��c� d�
 �c
 bda� �db� bbaa �bba b�a� ��c� ba
 �c

x � ��	� ��	� ��	� ��	� ��b� ��b� ��b� ��b� ��c� ��c� ��c� ��c�
y � a
d �a�d c
e �c�e �a�d a
d �c�e c
e ��� �
 �
��

�
z � ��b� a�d� �b
 ad
 a�d� c�e� ad
 ce
 add� cde� abda cbea

x � ��� ��� ��� ��� �
 �
 �
 �
 ��� ��� ��� ���
y � �
� ��c�

� �
c� ���� ��c� �
�� �
c� ���
��� �
�

��
z � 	d�� add� 	��b a�db 	d�� cde� 	��b c�eb dd�� bda� d��b b�ab

x � �� �� �� ��
��
��
��
�� ��c ��c ��c ��c
y � ����
��� �
��

�� ���� ��� �
�� �
� ���� �
� �
��

�
z � dd�� �db� d��b ��bb bda� �db� b�ab ��bb add� cde� a�db c�eb

x � �
�� �
�� �
�� �
��

�

�

�

� �
�� �
�� �
�� �
��
y � �
� ��c� �
 ��c ���� ��c� ��� ��c ���
��� ��
��
z � 	b�a abda 	��b a�db 	b�a cbea 	��b c�eb db�a bbaa d��b b�ab

x � �
� �
� �
� �
�

��

��

��

�� �
c� �
c� �
c� �
c�
y � ����
��� ���
�� ���� ��� ��� �� ���� �
� ��� �

z � db�a �bba d��b ��bb bbaa �bba b�ab ��bb abda cbea a�db c�eb

12

Table 4: Mid-Mid pairs (Part 2)

x � �f�� �f�� �f�� �f�� f
� f
� f
� f
� f
� f
� f
� f
�
y � �
b ��bb a
d �abd ���b ���b ��	b ��bb �a�d �a�d �a	d �abd
z � ��
 ad
 ���� a�d� ��
 f�
 �b
 ce
 ���� f��� ��b� c�e�

x � 	f�� 	f�� 	f�� 	f�� �f�� �f�� �f�� �f�� �f� �f� �f� �f�
y � ��b
��b �ad
a�d �
b ��	b a
d �a	d 	��b
��b 	a�d
a�d
z � d�
 ba
 d��� b�a� f�
 ad
 f��� a�d� d�
 �c
 d��� ��c�

x �
f��
f��
f��
f�� �f	� �f	� �f	� �f	� �fb� �fb� �fb� �fb�
y � 	��b ��b 	a�d �ad �
b ���b a
d �a�d ���b �
b �a�d a
d
z � ba
 �c
 b�a� ��c� �b
 ad
 ��b� a�d� ad
 ce
 a�d� c�e�

x � �d�� �d�� �d�� �d�� d
� d
� d
� d
� d
� d
� d
� d
�
y � b
a �bba �
c ��bc �b�a �b�a �b	a �bba ���c ���c ��	c ��bc
z � �	�� a	d� ��� a�d �	�� f	�� �	b� c	e� ��� f�� ��b c�e

x � 	d�� 	d�� 	d�� 	d�� �d�� �d�� �d�� �d�� �d� �d� �d� �d�
y � �ba
b�a ��c
��c b
a �b	a �
c ��	c 	b�a
b�a 	��c
��c
z � d	�� b	a� d�� b�a f	�� a	d� f�� a�d d	�� �	c� d�� ��c

x �
d��
d��
d��
d�� �d	� �d	� �d	� �d	� �db� �db� �db� �db�
y � 	b�a �ba 	��c ��c b
a �b�a �
c ���c �b�a b
a ���c �
c
z � b	a� �	c� b�a ��c �	b� a	d� ��b a�d a	d� c	e� a�d c�e

x � �b�a �b�a �b�a �b�a b
a b
a b
a b
a b
a b
a b
a b
a
y � d
� �db� �
c ��bc �d�� �d�� �d	� �db� ���c ���c ��	c ��bc
z � �	�� a	d� �
�� a
d� �	�� f	�� �	b� c	e� �
�� f
�� �
b� c
e�

x � 	b�a 	b�a 	b�a 	b�a �b�a �b�a �b�a �b�a �ba �ba �ba �ba
y � �d�
d�� ��c
��c d
� �d	� �
c ��	c 	d��
d�� 	��c
��c
z � d	�� b	a� d
�� b
a� f	�� a	d� f
�� a
d� d	�� �	c� d
�� �
c�

x �
b�a
b�a
b�a
b�a �b	a �b	a �b	a �b	a �bba �bba �bba �bba
y � 	d�� �d� 	��c ��c d
� �d�� �
c ���c �d�� d
� ���c �
c
z � b	a� �	c� b
a� �
c� �	b� a	d� �
b� a
d� a	d� c	e� a
d� c
e�

x � ���b ���b ���b ���b �
b �
b �
b �
b �
b �
b �
b �
b
y � f
� �fb� a
d �abd �f�� �f�� �f	� �fb� �a�d �a�d �a	d �abd
z � ��
 ad
 ���	 a�d	 ��
 f�
 �b
 ce
 ���	 f��	 ��b	 c�e	

x � 	��b 	��b 	��b 	��b ���b ���b ���b ���b ��b ��b ��b ��b
y � �f�
f�� �ad
a�d f
� �f	� a
d �a	d 	f��
f�� 	a�d
a�d
z � d�
 ba
 d��	 b�a	 f�
 ad
 f��	 a�d	 d�
 �c
 d��	 ��c	

x �
��b
��b
��b
��b ��	b ��	b ��	b ��	b ��bb ��bb ��bb ��bb
y � 	f�� �f� 	a�d �ad f
� �f�� a
d �a�d �f�� f
� �a�d a
d
z � ba
 �c
 b�a	 ��c	 �b
 ad
 ��b	 a�d	 ad
 ce
 a�d	 c�e	

x � ���c ���c ���c ���c ���c ���c ���c ���c �
c �
c �
c �
c
y � �
� ��c�

 �c
 d
� �db� b
a �bba ���� ��c� ��
 �c

z � 	a�d aadd 	c�e acde ��� a�d �
�� a
d� 	a�d caed 	c�e ccee

13

Table 4: Mid-Mid pairs (Part 3)

x � �
c �
c �
c �
c �
c �
c �
c �
c 	��c 	��c 	��c 	��c
y � �d�� �d�� �d	� �db� �b�a �b�a �b	a �bba �d�
d�� �ba
b�a
z � ��� f�� ��b c�e �
�� f
�� �
b� c
e� d�� b�a d
�� b
a�

x � ���c ���c ���c ���c ���c ���c ���c ���c ��c ��c ��c ��c
y � ���
��� �

�
 d
� �d	� b
a �b	a ����
��� ��

�

z � da�d baad dc�e bcae f�� a�d f
�� a
d� da�d �abd dc�e �cbe

x � ��c ��c ��c ��c
��c
��c
��c
��c
��c
��c
��c
��c
y � 	d��
d�� 	b�a
b�a ���� ��� ��
 �
 	d�� �d� 	b�a �ba
z � d�� ��c d
�� �
c� baad �abd bcae �cbe b�a ��c b
a� �
c�

x � ��	c ��	c ��	c ��	c ��bc ��bc ��bc ��bc ��cc ��cc ��cc ��cc
y � d
� �d�� b
a �b�a �d�� d
� �b�a b
a ���� �
� ��

z � ��b a�d �
b� a
d� a�d c�e a
d� c
e� aadd caed acde ccee

x � �a�d �a�d �a�d �a�d �a�d �a�d �a�d �a�d a
d a
d a
d a
d
y � �
� ��b� f
� �fb� �
b ��bb c
e �cbe ���� ���� ��	� ��b�
z � ���� a�d� ���� a�d� ���	 a�d	 ���b a�db ���� f��� ��b� c�e�

x � a
d a
d a
d a
d a
d a
d a
d a
d a
d a
d a
d a
d
y � �f�� �f�� �f	� �fb� ���b ���b ��	b ��bb �c�e �c�e �c	e �cbe
z � ���� f��� ��b� c�e� ���	 f��	 ��b	 c�e	 ���b f��b ��bb c�eb

x � 	a�d 	a�d 	a�d 	a�d 	a�d 	a�d 	a�d 	a�d �a�d �a�d �a�d �a�d
y � ���
��� �f�
f�� ��b
��b �ce
c�e �
� ��	� f
� �f	�
z � d��� b�a� d��� b�a� d��	 b�a	 d��b b�ab f��� a�d� f��� a�d�

x � �a�d �a�d �a�d �a�d �ad �ad �ad �ad �ad �ad �ad �ad
y � �
b ��	b c
e �c	e 	���
��� 	f��
f�� 	��b
��b 	c�e
c�e
z � f��	 a�d	 f��b a�db d��� ��c� d��� ��c� d��	 ��c	 d��b ��cb

x �
a�d
a�d
a�d
a�d
a�d
a�d
a�d
a�d �a	d �a	d �a	d �a	d
y � 	��� ��� 	f�� �f� 	��b ��b 	c�e �ce �
� ���� f
� �f��
z � b�a� ��c� b�a� ��c� b�a	 ��c	 b�ab ��cb ��b� a�d� ��b� a�d�

x � �a	d �a	d �a	d �a	d �abd �abd �abd �abd �abd �abd �abd �abd
y � �
b ���b c
e �c�e ���� �
� �f�� f
� ���b �
b �c�e c
e
z � ��b	 a�d	 ��bb a�db a�d� c�e� a�d� c�e� a�d	 c�e	 a�db c�eb

x � �c�e �c�e �c�e �c�e c
e c
e c
e c
e c
e c
e c
e c
e
y � �
� ��b� a
d �abd ���� ���� ��	� ��b� �a�d �a�d �a	d �abd
z � ��
 ad
 ���b a�db ��
 f�
 �b
 ce
 ���b f��b ��bb c�eb

x � 	c�e 	c�e 	c�e 	c�e �c�e �c�e �c�e �c�e �ce �ce �ce �ce
y � ���
��� �ad
a�d �
� ��	� a
d �a	d 	���
��� 	a�d
a�d
z � d�
 ba
 d��b b�ab f�
 ad
 f��b a�db d�
 �c
 d��b ��cb

x �
c�e
c�e
c�e
c�e �c	e �c	e �c	e �c	e �cbe �cbe �cbe �cbe
y � 	��� ��� 	a�d �ad �
� ���� a
d �a�d ���� �
� �a�d a
d
z � ba
 �c
 b�ab ��cb �b
 ad
 ��bb a�db ad
 ce
 a�db c�eb

14

B Possible countermeasures

Below we examine a few possible modifications that can be made to the encoding function to
protect it against attacks such the ones described in this note.

B.1 Massive mask changes

Supposed that instead of changing one bit here and there in the encoded message, the standard
is rewritten to have a massive, fixed, change in ��m�. For example, let
i� ei be the i’th nibbles
in the hexadecimal expansion of the irrational numbers
 � ������ � � � and e �
���	
	 � � �,
respectively. Possible encodings that use these masks could be:

���m� �
���
��� m��� m���

���
��� m��� m���

� � �

�
� m� m�

���m� � �
��� � s�m����� �
��� � s�m�����m��� m���

�
��� � s�m����� �
��� � s�m�����m��� m���

� � �

�
� � s�m��� �
� � s�m���m� m�

���m� � �
��� � s�m��� � e����� �
��� � s�m��� � e����� m��� m���

�
��� � s�m��� � e����� �
��� � s�m��� � e����� m��� m���

� � �

�
� � s�m� � e��� �
� � s�m� � e���m� m�

For each of these, it seems much harder to find a systematic choice of �� x and messages m to
satisfy ��m� � � � x. Below we describe some potential “partial attacks” against these encodings.

It is conceivable that an attacker can find large � (say � larger than the ��� power of the
modulus N), for which there are two strings x and x� and two messages m and m� such that

��m� � � � x and ��m�� � � � x�

Here � would be unstructured (unlike in the attacks from above). Since x and x� would both
be relatively small (of size N��), they might both be smooth. Then one could combine the two
signatures to eliminate the factor of � and develop a relation among the small primes represented
by x and x�. We note that for the purpose of this attack, a multiplier � is only useful if we can
find at least two strings x� x� which satisfy relations as above. Heuristically, we can assert that
many such � factors EXIST, even very large ones (say, larger than the 9/10 power of N). However,
finding them might be quite difficult. We could not come up with any efficient way of finding a
suitable � and the associated x� x��m�m�.

15

One possibility that we looked at, is to take two messages m�m� that have small Hamming
distance from each other, consider the difference � � ��m� � ��m�� (which also has a low
Hamming weight, since the encoding � is very local), and find an integer � which is a factor of the
difference �. Then alter the nibbles in which m and m� AGREE, creating new messages M�M�,
in the hope that ��M� is a multiple of �. If so, then ��M �� must also be a multiple of �. However,
there seems to be no efficient way of changing m to M as above; having found � by this fairly
random process, there is a very slim hope that any M will exist for which ��M� is divisible by �.
So this strategy seem to require quite a bit of trial and error.

(We note that one might hope to make a heuristic argument that encodings as above might be
difficult to attack; that if we could find many smooth numbers x satisfying these relations, then
we could just as easily factor N in the first place. We have not looked into substantiating such
arguments.)

B.2 Length expanding encoding

Other constructions that may be considered, involve encoding the message m into a string longer
than the modulus N . This has the advantage that it forces the attacker to deal with larger integers
(and so it is potentially harder to find smooth integers), but it does not have the “message recovery”
property. That is, it is no longer possible to extract m from the signature on m. For example,
suppose that we fix two constants c� and c�, each half the length of the modulus N . To encode a
message m (which is also half the length of the modulus N), we form the sums m � c��m � c�,
express them as binary strings, and form the concatenated string

���m� � �m� c�� �m� c��m

whose length is 3/2 that of N . For this encoding, an attacker could try to get either ���m� or the
residue ����m� mod N� to be smooth. Trying to get ���m� to be smooth, one could set

� � c� �
�n � c� �
n
� �
�n �
n � �

and then ���m� � � � � �m

As long as � and � are relatively primes, it would seem unlikely that m could be chosen much
smaller than

p
N to obtain ���m� � � � x for a large � and a small, smooth, x. (Intuitively, it

seems hard to pick a small m so that ���m� has a large factor which we understand and a small
factor that we don’t, where the small factor is required to be smooth, and that the small factor is
smaller than, say,

p
N .)

If the attacker is trying to get the residue ���m� mod N to be smooth, than he can compute a
constant � � ��� mod N , and he is reduced to trying to make the quantity � �m smooth. Again
this should be a daunting task, since � is about the same size as N , and m is only about half that
size. Hence the attacker can control the low order bits by choice of m, but the uncontrolled part is
still of size about

p
N .

A (very informal) hope here is that if the attacker is forced into a position where he needs
certain “randomly generated integers” of size

p
N to be smooth, then he is in no better position

than a person applying the Continued Fraction factoring method on N . (Such a person is also

16

generating integers of size
p
N and depending on a number of them to be smooth for the success

of his method.) By contrast, in the attacks from above the attacker works with integers x of 64-128
bits, so the probability that they are smooth is much higher.

B.3 Encoding via squaring

Another encoding method uses addition and squaring: We fix a random constant � of about the
same size as the modulus N , and set

���m� � m� � �

One advantage of this form is that finding many numbers of the form � � x for a smooth x, is as
difficult as factoring � (using the “Quadratic Sieve” method). On the other hand, ���m� is harder
to compute than the other encodings, and the relation to the signed message m is not transparent.

17

