|SO 9796-1 and the new forgery strategy
(Working Draft)

Don Coppersmith Shai Halevi Charanjit Jutla

IBM
August 23, 1999

Abstract

In this note we show how the new forgery strategy of Coron, Naccache and Stern can be
modified to break the SO 9796-1 standard for RSA and Rabin digital signatures.

1 1S0 9796-1 and the attack of Coron et al.

SO 9796-1 [4] is a standard for RSA (and Rabin) signatures [7, 6]. In particular, it was designed
to resist attacks that exploit the multiplicative structure underlying these cryptosystem. See[5] for
asurvey of these attacks, and [3] for the reasoning behind the 1SO 9796-1 standard.

Recently, Coron, Naccache and Stern describedin [1] a“new signatureforgery strategy”, which
is a sophisticated variant of the Desmedt-Odlyzko multiplicative attack from [2]. In their paper,
Coron et a. described an attack against a slight modification of 1SO 9796-1, but this attack does
not work “right out of the box” against the actual standard. In this note we show how a small
modification to the technique in [1] can be applied to break the actual 1SO 9796-1 standard. We
start by quickly reviewing the format that was considered by Coron et a. and the attack against it,
aswell asthe actual format used in SO 9796-1.

1.1 The“new forgery strategy”

The 1SO 9796-1 standard (and the variant the was considered by Coron at al.) specifies how a
message m is encoded for a signature before applying the RSA operation to it. It uses a fixed
nonlinear permutation s(z) mapping 4 bitsto 4 bits. Below we let 5(z) be the result of setting the
most significant bit of s(z) to ‘1’ (where z isa4-bit nibble). That is, 5(z) = 1000 OR s(z). The
variant that was considered in [1] is as follows. Assume that the modulus length is 16z + 1 bit
(where z is even), and the message m is of length 8z bits. The message is encoded into a 16z-bit
integer by using an encoding function y, which is defined as

(me—1) s(me_z) me_1 my_s

S(ml—3) S(ml—4) g3 TMy—4

O

wm) =

s(mg) s(ma) mz ma

s(my) s(mg) mo 6

wherem; isthe:’th 4-bit nibble of m. To sign amessage m, one needsto apply the RSA operation
to u(m).

The Coron et al. attack against this signature scheme proceeds roughly as follows. They
consider 64-hit strings z of the form

whereaq . . . a; areany six nibbles, except that as must be one of the eight nibbles for which s(ae)
already has the most significant bit set to 1. Since z is short (only 64 hits), then there is a good
probability that it will be smooth (i.e., will have only “small” prime factors — say all smaller than

916). Then they set
z/2—1

= Z 264i
1=0
and consider the 162z-bit integers M = T' - z, which isjust z/2 repetitions of the string z. Since =
has the most significant bit set to 1 (because of the restriction on ag) and the least significant nibble
setto'6', then M isindeed avalid encoding of some message m. Namely, there exists a message
m (which can be easily recovered from M) such that u(m) = M.

The procedure above is repeated many times, with different =’ es, so as to generate many valid
encodings M; = I' - z, for which z; is smooth. For example, if the smoothness bound that is
considered is 2!°, then the attack needsto collect about 6500 such M;’s, since there are about 6500
primes smaller than 216, Once enough M;'s are collected, one can find “homomorphic dependen-
cies’ between these M;’s, and use these dependencies to devise a signature on one of these M;’s
from the signatures on the others. See [1] for more details on the attack.

Remark (off-linework). An interesting feature of the attack from [1], isthat essentially all the
work is invested in finding the M;’s, and this work can be done off-line, before even seeing the
RSA modulus. Once enough A;’s are collected, they can be used against any RSA modulus of the
right length. The attack that we describe in this note enjoys the same feature. In the sequel we
refer to the M’ s that are found in the off-line phase of the attack as “would be forgeries’.

1.2 The“real” 1SO 9796-1 standard

The actual encoding function that is used in the ISO 9796-1 standard is dlightly different than the
function p above. For the same setting of parameters (i.e., modulus of 16z + 1 bits and 8z-bit
messages), the encoding function — denoted 1., —is defined as follows:

hso(m) = 3(my_1) 3(my_2) me1 me o

S(ml—3) S(ml—4) M3 My—4q

2

s(mg) s(ma) mg ma

s(my) s(mg) mo 6

where 3(z) denotesthe nibble s(z) with the least significant bit flipped (i.e., 3(z) = s(z)®1, where
¢ denotes exclusive-or). Namely, for these parameters, the difference between p(m) and 4, (m)
isthat the lowest bit in the second-most-significant nibble of x,,, (m) isflipped. Asbefore, to sign
amessage m, one needs to apply the RSA operation to ., (m).

One can see that now we cannot simply represent the encoding g, (m) asaproduct I' - with
I', z as above. Hence the attack must be modified to apply to this encoding function.

2 Modifyingthe attack

The modified attack is similar to the one from [1], except that it uses a slightly different structure
for ' and z. In the original attack, the constant I' consisted of several 1's that were separated by as
many 0's as there are bitsin z. In the modified attack, we again have a constant I' which consists
of afew 1's separated by many 0's, but this time there are fewer separating 0's.

We start with an example. Consider a 64-bit integer =, which is represented as four 16-bit
words z = abed (SO a is the most-significant word of z, b is the second-most-significant, etc.).
Also, consider the 144-bit constant ' = 100010001, where again each digit represent a 16-bit
word. Now consider what happens when we multiply I - z. We have

- z= a b c d
1 001001
a b c d
a b c d
d

a b c
a b ce b ce b cd

where e = a + d (assuming that no carry is generated in the addition « + d). Notice that the
16-bit d appears only as the least-significant word of the result, and the 16-bit « appears only as
the most-significant word of the result. It is therefore possible to arrange it so that the form of the
words a, d be different than the form of the words b, ¢ and e, and this could match the different
forms of the least- and most-significant words in the encoded message ., (m).

More precisely, we consider three types of 16-bit words. For a 16-bit word z, we say that:

e zisavalidlowword if it hastheformz = s(u) s(v) v 6, for some two nibbles u, v.
e z isavalid middleword if it hastheformz = s(u) s(v) u v, for some two nibbles u, v.
e zisavalid highwordif it hastheform z = 5(u) 3(v) u v, for some two nibbles «, v.

We note that there are exactly 256 valid low words, 256 valid middle words, and 256 valid high
words (since in each case we can arbitrarily choose the nibbles u, v).

In the example above, we needed « to be avalid high word, d to be avalid low word, 6 and ¢ to
be valid middle words, and we also needed e = a + d to be avalid middle word. In Appendix A

3

we list useful combinations of valid words for which the sum is also a valid word. We note the
following:

e Thereare 64 pairsz,y such that z isavalid highword, y isavalid low word, and z = z + y
isavalid middle word (this is what we needed for the example above). We call such a pair
(z,y) ahigh-low pair.

e There are 84 pairs z,y such that z is a valid high word, y is a valid middle word, and
z =z + y isavalid middleword. We call such apair (z,y) ahigh-mid pair.

e There are 150 pairs z,y such that z is a valid middle word, y is a valid low word, and
z =z + y isavalid middleword. We call such apair (z,y) amid-low pair.

e There are 468 pairs z,y such that = is a valid middle word, y is a valid middle word, and
z =z + yisaso avalid middle word. We call such apair (z,y) amid-mid pair.

We are now ready to present the attack. For clarity of presentation we start by presenting the attack
for the special cases wherethe modulus size is 1024+1 bits and 2048+1 hits. We later describe the
general case.

2.1 Moduli of size 1024+1 bits

When the modulussizeisk = 1025 bits, we need to encode the messages as 1024-bit integers with
the high bit set to 1. The attack proceeds similarly to the example from above: We consider 64-bit
integers z = abed, where a isavalid high-word, d isavalid low-word, and b,cand e = a + d are
valid middle words. There are 64 choices for the high-low pair (a, d) and 256 choices for each of
b, c, so there are total of 222 z’es of the right form. We then set

20

Tiooa = Y. 2% = 1001 001 ... 001 ge
=0

1 followed by 20 repetitions of 001 (base 21¢)

This gives us
M =T104-z = a bcebce ... bce bed

20 repetitions

which is a valid encoding of some message M = ., (m), because of the way = was chosen. If
we set the smoothness bound of the attack to B = 21°, then the 64-bit integer = has probability of
about 2=77 to be B-smooth, so we expect that there are about 222 - 2-7-7 a2 20000 z’es of theright
form which are B-smooth. Since there are only about 6500 primes smaller than 21°, we have more
than enough smooth z’ es to get the “homomorphic dependencies’ that are needed for the attack.

The above attack has essentially the same complexity as the one that is described by Coron et
a. in[1, Section 4.1] (since it uses 64-bit integers z, just as it is done in the original attack). In
it reported in [1] that for smoothness bound of about 2!%, a single PC can prepare thousands of
“would be forgeries’ in less than a day. Recall also that this work is all done off-line, and then
these “would-beforgeries’ can be used against any RSA modulus of 1024+1 bits. After the off-line
work is done, the attack needs to collect about 3000 signatures, and then the actual forgeries can
be generated instantly.

2.2 Moduli of size 2048+1 bits

When the modulussizeis & = 2049 bits, we need to encode the messages as 2048-bit integers with
the high bit set to 1. Here we need to modify the attack alittle, by changing the length of z and the
amount of “overlap” that isused in the product ' - z. Specifically, we can work with 128-bit =’ es,
z = abedefgh, where o is avalid high-word, & is avalid low-word, and b, ¢, d, ¢, f, g and also
1 =a+gandj = b+ h arevaid middle-words. This gives us 84 choices for the high-mid pair
(a,g), 150 choices for the mid-low pair (b, ~) and 256 choices for each of ¢, d, e, f, so we have
total of more than 2*° choices for z. We set

20

Taoas = 2% = 1000001 ... 000001 yie
=0

20 repetitions

and so we get
M =Toug-xz = abcdefiy ... cdefiy cdefgh
20 repetitions

which is again a valid encoding. Since = is a 128-bit integer, the probability that it is, say, 22°-
smooth is about 27174, So we expect there to be about 2%° - 27174 ~ 228 z’es of the right form
which are 22°-smooth, and we only need about 82000 ~ 2% of them to get the “homomorphic
dependencies’ (since there are about 82000 primes smaller than 22°).

Using the estimates from [1, Section 2], the complexity of finding a B-smooth, L-bit integer
z during the off-line phase of this attack is about Cr, g = O (W{ZB)). In our case we have
L =128,B = 2 soweget 1, 5 ~ 2%. In the off-line phase of the attack we need to find about
82000 smooth z’ esto get “ homomorphic dependencies’, and then each additional smooth =z would
give us another “would beforgery”. Hence we estimate that the complexity of the off-line phaseis
about 251 to get the first “would be forgery”, and then 23 for each additional one. Thisis till well
below the complexity of, say, an exhaustive DES key search (and just as for DES key search, this
work can be done off-lineand is easily paralelizable).

Once the off-line phase is over, the list of “would be forgeries’ can be used against any RSA
modulus of 2048+1 bits. The attack needs to collect about 82000 signatures, and then the forgeries
can be produced almost instantly.

2.3 Thegeneral case

For amoduluswhose sizeif 16z 41 bits(for an even z), we need to encode the messages as 16z-bit
integers, which means that the encodings should have z 16-bit words. We write the integer z as
z =a-m+ (,wherea, 5, m areal integerswith o, 6 > 1 and m > 2. For reasons that will soon
become clear, we try to get « + 3 as small as possible, while making surethat o — 3 is at least 2
or 3.

The attack then workswithintegers z of o+ 3 16-bit words (which iswhy we want to minimize
a +), and use “overlap” of 5 wordsin the product I - z. If we denotey = o + 3, then we have
r = ay...a;, Where a, isavalid high-word, «, isavalid low-word, and the other a;’s are valid
middle words (and we also need some of the sumsto be valid middle words). We then set

m—1
T, = > 2% =1 0.01 0.01 ...0.01
1=0 m—1 repetitions of 0..01 (a—1 0’s followed by 1)

5

When we multiply I'y6, - z we get

g, -z = Ay .. Gagl Qo .. G .. a1
0 1 0 . 0 1 0 . 01
Ay .. Aoyl Qo .. Qg .. a1
Ay .. Aoyl Qo .. Qg .. a1
ag .. a1
hence we also need the sums (a, + ag), - . -, (aat2 + a2), (@a+1 + a1) to bevalid middie words.

If 6 = 1 (asin the case of 1025-bit moduli above), we have 64 choices for the high-low pair
(a,a1) and 256 choices for each of the other a;’s, so we get total of 64 - 256~ choices for z.

If 8 > 2 (asin the case of 2049-bit moduli above), we have 84 choices for the high-mid pair
(ay, ag), 150 choices for the mid-low pair (aa+1, a1), 468 choices for each of the mid-mid pairs
(a@y-1,a8-1) - - (@at2, az). Thus the total number of choices for z is 84 - 150 - 468°~2 - 256,
(Thisis the reason that we want o — (3 to be at least 2 or 3.) For the attack to be successful, we
should set the parameters o, G so that there are enough smooth z’ esto guarantee the “ homomorphic
dependencies’ that we need.

As another example for the general case, consider moduli of 768+1 bits. We need to encode
the messages as integers of 768 bits, or 768/16 = 48 words. We can write48 = 5 - 9 + 3, sowe
have o = 5,3 = 3. Hence wework with z’esof 5 + 3 = 8 words (128 hits) and use an overlap of
3 words. For this case we have 84 - 150 - 468 - 2562 > 238 choices for z. If pick the smoothness
bound to be 229, then the probability that = be smooth is about 27174, so we expect there to be
about 22! smooth z’es, and we only need about 82000 ~ 2!¢ of them to get the “homomorphic
dependencies’, since there are about 82000 primes smaller than 22°. The complexity of this attack
is the same as for the (2048 + 1)-bit moduli.

2.4 Possible extensions

The attack that we described above was intended to works against moduli of size 16z +1 bitsfor an
even integer z, but there are afew straightforward ways to extend the attack to handle other moduli
sizes. For example, for a modulus of size 16z-bits (with z even), we should encode messages as
integers with 16z — 1 bits, which we can view as z-word integers with the highest bit set to 0 and
the second-highest bit set to 1. To handle these integers, we re-define avalid high-word as a 16-bit
word of theformz = 5(u) 3(v) u v, for some two nibbles v, v, where 5(u) isthe nibble s(«) with
the highest bit set to 0 and the second-highest bit set to 1. Although we did not check this, we
suspect that the modified definition of avalid high-word will not significantly change the number
of high-low and high-mid pairs, so the complexity of an attack against 16z-bit moduli should be
roughly the same as that of an attack against moduli of 16z + 1 bits.

Another extension of the attack is to consider also the cases where there are some carry bits
between the nibblesin the computation of I'-z. For example, for thecase of 5 > 2 (see Section 2.3)
we can have carry bits between the “overlap” words in the multiplication without effecting the
attack. We estimate that considering these carry bits can increase the number of possible z’ es by
about afactor of 2°~! (since we can have z’sthat cause any pattern of carry bits inside a string of
length 3 nibbles).

Yet another plausible extension is to handle the case where not only the first and last words of
the encoding have different formats, but also one other word in the middle. This is the case, for

6

example, when we encode a message m of length less than half the size of the modulus. In that
case, the form of the highest word would be z = 5(u) s(v) u v, the form of the lowest word would
be z = 35(u) s(v) v 6, and there would be one other word somewhere in the middle of the form
z = s(u) §(v) v v. Inthis case we may be able to modify I" alittle, so that the spacing of the 1'sis
not equal everywhere. For example, if we have z = abed and I' = 10010001, we get

-z= a b c d
1001 0001
a b c d
a b c d
d

a b ¢
a b ¢

e b c da b c d

Now notice that the word e only appears once in the middle, and so we can arrange it so that it
would have a different form than the other words. This technique can potentially be used to find
more forgeries, or to reduce the complexity of the attack against certain moduli-lengths.

3 Conclusions

In this note we demonstrated that the SO 9796-1 standard can be broken using a variant of the
Coron, Naccache and Stern attack from [1]. The estimated complexity of the new attack depends
heavily on the modulus length: for some lengths (e.g., 1024+1 bits) the attack can be easily carried
out on asingle PC in less than a day, while for other lengths (e.g., 2048+1 hits) it has nearly the
same complexity as an exhaustive search for a DES key. Still, we stress that the attack is feasible
against all themoduli lengths that we considered. We also sketched afew waysin which this attack
can be generalized to work against other moduli lengths.

In light of this break, we believe that the standard needs to be modified. In our view, the
first step that should be taken is to re-examine the need for this mode of “hash-free encoding” for
signatures. An obvious disadvantage of this mode is that it gives an attacker quite a bit of control
over the encoded messages. Since the encoding rule is usually very “local” (i.e., each bit of m
effects only very few bits of n(m)), an attacker has an ample opportunity to play with m in order
to arrange that (m) has some desired properties. Moreover, as opposed to the “full domain hash”
that can be analyzed (and proven secure) in the random-oracle model, there seems to be no hope
of getting smilar resultsin the “hash free” case.

If it is decided to keep this* hash free” mode, we describe in Appendix B some possible modifi-
cations that can be made to the encoding function. In particular, we suggest to consider encodings
with “massive mask changes’, such as the functions u, and w3 from Subsection B.1. (Similar
encodings were also suggested in [8].) These functions stay close to the origina intent of 1SO
9796-1, but at the same time they seem resistant to multiplicative attacks such as the ones in [1]
and in this note.

Acknowledgments. We thank Mike Matyas for encouraging us to work on these new attacks
and for several useful discussions. We also thank David Naccache for bringing the note [8] to our
attention.

References

[1] Jean-Sébastien Coron, David Naccache and Julien P. Stern. On the Security of RSA Padding
In proceedings of Crypto’99. LNCS vol. 1666, pages 1-18, Springer, 1999.

[2] Y. Desmentand A.Odlyzko. A chosen text attack on the RSA cryptosystem and some discrete
logarithm schemes. In Crypto’ 85, LNCS vol. 218, pp. 516-522. Springer-Verlag, 1986.

[3] L.C. Guillou and J.-J. Quisquater. Precautions Taken Against Various Potential Attacksin
ISO/IEC DIS9796". In EUROCRY PT’ 90, LNCS vol. 473, Pages 465-473. Springer-Verlag,
1990.

[4] ISO/EC 9796-1, Information technology — Security techniques — Digital signature schemes
giving message recovery — Part 1. Mechanisms using redundancy.

[5] JF. Misarsky. How (not) to design RSA signature schemes. In PKC' 98, LNCS vol. 1431,
pp. 14-28. Springer-Verlag, 1998.

[6] M.O. Rabin. Digitized Signatures and public key functions as intractable as factoring.
MIT/LCS/TR-212, 1979.

[7] R. Rivest, A. Shamir and L. Adelman. A Method for Obtaining Digital Signature and Public
Key Cryptosystems. Comm. of ACM, 21 (1978), pp. 120-126

[8] SC27N23xx: Report of the Ad-Hoc meeting on 9796 held at Gemplus, Paris, on May-14-
1999.

A Useful pairsfor the attack

Herewe list al the various types of pairs (z,y) of 16-bit words that we use in our attack (together
with their sum, z = z 4 y). All the constants in the tables below are in hexadecimal (base-16)
representation.

Table 1: High-Low pairs

z—= 8130 af60 8780 bfa0 afd0 b211 d221 9241 251 d291 92f1 a462
= 0316 4316 4316 2266 1316 0d96 1ce6 1d96 0d96 2ce6 1ce6 3bab
z= 9246 f276 d296 €206 c2e6 bfa7 ef07 afd?7 cfe? ff77 afd7 e008

z= a4d2 94f2 d923 9943 8983 99f3 8834 a864 8884 b8ad a8d4 8585
= 4ba6 3bab 2456 4456 2456 5316 1316 5316 5316 3266 2316 6086
z= f078 d098 fd79 dd99 add9 ed09 9b4a fbT7a db9a ebla cbea e60b

z= 95f5 d326 9346 8386 9316 ae67 aed7 9ef7 8138 8138 9148 bla8
= 6086 2456 4456 2456 5316 3ba6 4bab6 3bab 2bab 6ad6 3bab 4adb
z= f67b f77c d79¢ aT7dc €e70c eald fa7d da9d acde ecle ccee fcTe

z = ald8 cch9 8c89 bala 8a3a 9ada 8a8a caea <c7hb cTeb 97fb bblc
= lad6 2526 2526 4456 5456 2456 4456 2316 1ba6 0ba6 1ba6 1f76
z= beae f17f blaf fe7l0 de90 beald cee0 eeQ0 €301 d391 b3al d592

z = abbc 96fc bbld 8b3d 9b4d 8b8d bbad 9bfd cdbe cdee 9dfe bO1f
y= 1f76 4e06 2ce6 1d96 2d96 6ce6 1ceb6 2ce6 1bab 0bab 1bab 4456
z= che2 eb02 e803 a8d3 c8e3 f873 d893 c8e3 €904 d994 b9ad f4T5
z = 803f 904f 808f clef
= b456 2456 4456 2316
z= d495 bdadb cde5 €405

Table 2: High-Mid pairs

bfal
2e60
ee00

bfal
lef0
de90

bfal
2361
e301

bfal
13f1
d391

bfal
2562
eb02

bfal
15 £2
d592

bfal
2863
e803

bfal
18f3
d893

bfal
2964
€904

bfal
19 f4
d994

bfal
2465
e405

bfal
14f5
d495

bfal
2266
€206

bfal
126
d296

bfal
2f67
ef07

bfal

1f 7
dFoT

bfal
2068
e008

bfal
10£8
d098

bfal
2d69
ed09

bfal
1df9
dd99

bfal
2b6a
ebla

bfal
1bfa
db9a

bfal
266b
e60b

bfal
16fb
d69b

bfal
276¢
e70c

bfal
17fc
d79c¢

bfal
2a6d
eald

bfal
lafd
da9d

bfal
2cbe
ecle

bfal
lcfe
dc9e

bfal
216 f
el0f

bfal

11ff
d19f

9241
4351
d592

9241
2361
b5a2

9241
4abd
dc9e

9241
2a6d

bcae

9442
4552
d994

9442
2562
b9a4

9442
465b
da9d

9442
266b
baad

59a3
2e60
e803

b9a3
lef0
d893

59a3
2863
€206

59a3
1813
d296

b9a3
2d69
e70c

b9a3
1df9
d79c

59a3
276¢
el0f

b9a3
17fc
d19f

b5a5
2e60
e405

bbab
lef0
d495

b5a5
2b6a
el0f

b5ab
1bfa
d19f

6316
4b5a
fer0

b316
0b8a
beal

b316
415f
£AT5

b316
018f
bdab

c356
3bla
fer0

c356
068a

ceel

356
311f
£AT5

356
018f
cdeb

8386
3bla
beal

8386
4b5q

ceel

8386
311f
bdab

8386
415f
cdeb

b3ab
2e60
€206

b3ab
lef0
d296

b3ab
2d69
el0f

b3ab
1df9
d19f

bla8
2e60
e008

bla8
lef0
d098

bla8
2167
el0f

bla8

1ff7
d19f

b7ab
2e60
e60b

b7ab
lef0
d69b

b7ab
2964
el0f

b7ab
19 f4
d19f

bbad
2e60
eald

bbad
lef0
da9d

bbad
2562
el0f

bbad
15 £2
d19f

bdae
2e60

ecle

bdae
lef0
dc9e

bdae
2361
el0f

bdae
13f1
d19f

10

Table 3: Mid-Low pairs

5¢20
9456
£276

9e40
3456
d296

4e50
6456
b2a6

2e60
3456
6266

0e80
9456
a2d6

lef0
c316
e206

2361
cbab
ef07

0381
5ba6
5£27

a3dl
5bab

ffT

13f1
cbab
daror

3512
2bab
60568

5522
16a6
70c8

8532
16a6
a0d8

8532
5adb
e008

9542
2bab
c0e8

4552
Oadb
5028

2562
5adb
8038

0582
3adb
4058

b5a2
3adb
f078

75¢2
5adb
d098

abd?2
0adb
b0a8

1512
5ad6
70c8

3813
5526
8d39

5823
4526
9d49

4853
b526
£d79

0883
b526
bda9

68563
4526
add9

68563
8456
ed09

78c3
5526
cde9

18f3
8456
9d49

3914
c266
fbra

3914
bl1f6
ebla

8934
5266
db9a

9944
2266
bbaa

4954
2266
6bba

4954
5116
9b4q

2064
5266
Tbca

2964
21£6
4b5q

0984
c266

cbea

0984

f156
fbra

b9a4
2116
db9a

6964
5116
bbaa

1974
b1 6

cbea

3415
c266
f67b

3415
bl1f6
e60b

8435
5266
d69b

9445
2266
b6ab

4455
2266
66bb

4455
516
964b

2465
5266
76ch

2465
21 6
465b

0485
c266
cbeb

0485

f1f6
F67b

bdab
21£6
d69b

64b5
5116
b6ab

145
bl1f6
cbeb

3216
5526
873¢

5226
4526
974c¢

4256
b526
fiic

0286
5526
blac

6266
4526
a7de

6266
8456
e70c

72c6
5526

clec

126
8456
974c¢

3f17
2bab
6abd

5127
16a6
Tacd

8137
16a6
aadd

8137
5adb
eald

9747
2bab

caed

457
Oadb
5a2d

2167
5ad6
8a3d

0187
3adb
4abd

bfa7
3adb
fa'd

7fc7
5adb
da9d

afd7
Oadb
baad

1ff7
5adb
Tacd

2068
cbab

ecle

0088
5ba6
5c2e

a0d8
5bab
fcle

108
cbab
dc9e

5d29
9456

i

9449
3456
d19f

4d59
6456
blaf

2d69
3456
61bf

0489
9456
aldf

1df9
c316
el0f

3bla
5316
8e30

5b2a
4316
9e40

4b5a
6316
fer0

0b8a
b316
beal

db9a
1266
ee00

6bba
4316
aed(

Tbca
5316

ceel

Tbca
1266
8e30

1bfa
1266
2e60

361b
2d96
63b1

36156
aceb

e301

562b
1496
73cl

863b
1496
a3dl

964b
2d96
c3el

465b
4ceb
9341

266b
lceb
4351

0685
eceb

£371

b6ab
lceb
d391

66bb
4ceb
b3al

16fb
aceb
c3el

371c
1e06
5522

572¢
2e06
8532

873¢
0e06
0542

276¢
ce06
fh72

276¢
bd96
eb02

078¢
ce06
d592

078¢
4496
5522

67bc
0e06
75¢2

T7cc
2e06
abd?2

a7de
1e06
che2

a7de
4d96
fh72

17fc
bd96
d592

3ald
1e06
5823

5a2d
2e06
8833

8a3d
0e06
0843

2a6d
ce06
f873

2a6d
bd96
e803

0a8d
ce06
d893

0a8d
4496
5823

6abd
0e06
78c3

Tacd
2e06
a8d3

aadd
1e06
c8e3

aadd
4d96
f873

lafd
bd96
d893

3cle
2d96
6964

3cle
aceb

€904

5c2e
1d96
79c4

8cle
1d96
a9d4

9cde
2d96
c9ed

4che
4ceb
9944

2cbe
lceb
4954

Oc8e
eceb

£974

bcae
lceb
d994

6cbe
4ceb
b9a4

lcfe
aceb
c9ed

311f
5316
8435

512f
4316
9445

415f
b316
FAT5

N W BN 8N 8|l 8@ 8|l 8@ 8|l 8|l 8|l 8|l 8llve 8|lvnwe 8

018f
b316
bdab

d19f
1266
e405

61bf
4316
addb

Tlef
5316
cdeb

Tlef
1266
8435

11ff
1266

2465

11

Table 4: Mid-Mid pairs (Part 1)

3311
5522
8833

3311
75¢2
a8d3

3311
572¢
8a3d

3311
T7cc
aadd

5321
3512
8833

5321
75¢2
c8e3

5321
371c
8a3d

5321
T7cc

caed

9341
4552
d893

9341
2562
b8a3

9341
475¢
da9d

9341
276¢
baad

4351
9542
d893

4351
2562
68b3

4351
974c
da9d

4351
276¢
6abd

2361
0542
b8a3

2361
4552
68b3

2361
974c
baad

2361
475¢
6abd

73cl
3512
a8d3

73cl
5522
c8e3

73cl
371c
aadd

73cl
572¢

caed

3512
5321
8833

3512
73cl
a8d3

3512
572¢
8cle

3512
T7cc

acde

5522
3311
8833

5522
73cl
c8e3

5522
371c
8cle

5522
T7cc

ccee

9542
4351
d893

0542
2361
b8a3

9542
475¢
dc9e

9542
276¢

bcae

4552
9341
d893

4552
2361
68b3

4552
974c
dc9e

4552
276¢
6cbe

2562
9341
b8a3

2562
4351
68b3

2562
974c¢

bcae

2562
475¢
6cbe

75¢2
3311
a8d3

75¢2
5321
c8e3

75¢2
371c

acde

75¢2
572¢

ccee

3914
5425
8d39

3914
74chH
add9

3914
5226
8b63a

3914
72c6
abda

3914
5a2d
9341

3914
6abd
a3dl

3914
5c2e
9542

3914
6cbe
abd?2

5924
3415
8d39

5924
74chH
cde9

5924
3216
8b63a

5924
72c6

cbea

5924
3ald
9341

5924
9a4d
371

5924
0a8d
63b1

5924
6abd
c3el

5924
3cle
9542

5924
9cde
fh72

5924
Oc8e
6562

5924
6cbe
che2

8934
4abd
d391

8934
2a6d
b3al

8934
4che
d592

8934
2cbe
b5a2

9944
4455
dd99

0944
2465
bda9

0944
4256
db9a

9944
2266
bbaa

0944
5a2d
371

9944
0a8d
a3dl

9944
5c2e
fh72

9944
Oc8e
abd?2

4954
9445
dd99

4954
2465
6469

4954
0246
db9a

4954
2266
6bba

4954
8a3d
d391

4954
2a6d
73cl

4954
8cle
d592

4954
2cbe
75¢2

2964
9445
bda9

2964
4455
6469

2064
9246
bbaa

2964
4256
6bba

2064
8a3d
b3al

2064
4abd
73cl

2964
8cle
b5a2

2964
4che
75¢2

0984
5a2d
63b1

0984
9a4d
a3dl

0984
5c2e
6562

0984
9cde
abd?2

6964
3ald
a3dl

6964
5a2d
c3el

6964
3cle
abd?2

6964
5c2e
che2

79c4
3415
add9

79c4
5425
cde9

79c4
3216
abda

79c4
5226

cbea

3415
5924
8d39

3415
79c4
add9

3415
5226
863b

3415
72c6
abdb

5425
3914
8d39

5425
79c4
cde9

5425
3216
863b

5425
72c6
cbeb

9445
4954
dd99

9445
2964
bda9

9445
4256
d69b

9445
2266
b6ab

4455
9944
dd99

4455
2964
6469

4455
9246
d69b

4455
2266
66bb

2465
0944
bda9

2465
4954
6469

2465
0246
b6ab

2465
4256
66bb

74chH
3914
add9

74chH
5924
cde9

74chH
3216
abdb

74chH
5226
cbeb

3216
5924
8b63a

3216
79c4
abda

3216
5425
863b

3216
74chH
abdb

5226
3914
8b63a

5226
79c4

cbea

5226
3415
863b

5226
74chH
cbeb

0246
4954
db9a

9246
2064
bbaa

9246
4455
d69b

0246
2465
b6ab

N W BN 8N 8|l 8@ 8|l 8@ 8|l 8|l 8|l 8|l 8llve 8|lvnwe 8

4256
0944
db9a

4256
2964
6bba

4256
9445
d69b

4256
2465
66bb

2266
9944
bbaa

2266
4954
6bba

2266
9445
b6ab

2266
4455
66bb

72c6
3914
abda

72c6
5924

cbea

72c6
3415
abdb

72c6
5425
cbeb

12

Table 4: Mid-Mid pairs (Part 2)

3f17
562b
9542

3117
66bb
abd?2

3117
5a2d
0944

3f17
6abd
a9d4

5f27
3616
9542

5f27
964b
F572

5f27
068b
6562

5127
66bb
che2

5127
3ald
0944

5127
9a4d
7974

5127
0a8d
6964

5127
6abd
c9ed

8f37
465b
d592

8137
266b
b5a2

8137
4abd
d994

8137
2a6d
b9a4

0fA7
562b
F572

9747
068b
abd?2

9747
5a2d
7974

9fa7
0a8d
a9d4

Af57
863b
d592

4157
266b
75¢2

4157
8a3d
d994

457
2a6d
79c4

2167
863b
b5a2

2167
465b
75¢2

2167
8a3d
b9a4

2167
4abd
79c4

0f87
562b
6562

0f87
964b
abd?2

0f87
5a2d
6964

0187
9a4d
a9d4

6167
3616
abd?2

61b7
562b
che2

61b7
3ald
a9d4

61b7
5a2d
c9ed

3d19
5b2a
0843

3d19
6bba
a8d3

3d19
572¢
9445

3d19
67bc
addb

5d29
3bla
0843

5d29
9b4q
7873

5d29
068a
6863

5d29
6bba
c8e3

5d29
371c
9445

5d29
974c¢
f475

5d29
078¢
64b5

5d29
67bc
cdeb

8d39
4b5q
d893

8439
2b6a
b8a3

8439
475¢
d495

8439
276¢
bdab

9d49
5b2a
7873

9d49
0b8a
a8d3

9d49
572¢
f475

9d49
078¢
addb

4d59
8b63a
d893

4d59
2b6a
78c3

4d59
873¢
d495

4d59
276¢
74chH

2d69
8b3a
b8a3

2d69
4b5q
78c3

2d69
873¢
bdab

2d69
475¢
74chH

0d89
5b2a
68563

0489
9b4q
a8d3

0d89
572¢
64b5

0489
974c
addb

6469
3bla
a8d3

6469
5b2a
c8e3

6469
371c
addb

6469
572¢
cdeb

3bla
5d29
0843

3bla
6469
a8d3

3bla
572¢
9246

3bla
67bc
a2d6

5b2a
3d19
0843

5b2a
9d49
7873

5b2a
0d89
68563

5b2a
6469
c8e3

5b2a
371c
9246

5b2a
974c
f276

5b2a
078¢
6266

5b2a
67bc
c2eb

8b63a
4d59
d893

8b3a
2d69
b8a3

8b3a
475¢
d296

8b3a
276¢
b2a6

9b4q
5d29
7873

9b4q
0489
a8d3

9b4q
572¢
f276

9b4q
078¢
a2d6

4b5q
8d39
d893

4b5q
2d69
78c3

4b5q
873¢
d296

4b5q
276¢
72c6

2b6a
8439
b8a3

2b6a
4d59
78c3

2b6a
873¢
b2a6

2b6a
475¢
72c6

068a
5d29
6863

0b8a
9d49
a8d3

0b8a
572¢
6266

0b8a
974c
a2d6

6bba
3d19
a8d3

6bba
5d29
c8e3

6bba
371c
a2d6

6bba
572¢
c2eb

3616
5f27
9542

3616
6167
abd?2

3616
5a2d
9048

361b
6abd
a0d8

5626
3f17
9542

5626
0 f47
F572

5626
0f87
6562

562b
61b7
che2

562b
3ald
9048

562b
9a4d
7078

562b
0a8d
60568

562b
6abd
c0e8

863b
Af57
d592

863b
2167
b5a2

863b
4abd
d098

8635
2a6d
50a8

964b
5f27
F572

964b
0f87
abd?2

964b
5a2d
7078

964b
0a8d
a0d8

465D
8£37
d592

465b
2167
75¢2

465b
8a3d
d098

465b
2a6d
70c8

266b
8137
b5a2

266b
4157
75¢2

266b
8a3d
b0a8

266b
4abd
70c8

068b
5f27
6562

068b
9747
abd?2

068b
5a2d
60568

0685
9a4d
a0d8

66bb
3117
abd?2

66bb
5127
che2

66bb
3ald
a0d8

66bb
5a2d
c0e8

371c
5321
8a3d

371c
73cl
aadd

371c
5522
8cle

371c
75¢2
acde

371c
5d29
9445

371c
6469
addb

371c
5b2a
9246

371c
6bba
a2d6

572¢
3311
8a3d

572¢
73cl

caed

572¢
3512
8cle

572¢
75¢2

ccee

13

Table 4: Mid-Mid pairs (Part 3)

572¢
3d19
9445

572¢
9d49
f475

572¢
0d89
64b5

572¢
6469
cdeb

572¢
3bla
9246

572¢
9b4q
f276

572¢
0b8a
6266

572¢
6bba
c2eb

873¢
4d59
d495

873¢
2d69
bdab

873¢
4b5q
d296

873¢
2b6a
b2a6

974c
4351
da9d

974c
2361
baad

974c
4552
dc9e

974c¢
2562

bcae

974c¢
5d29
f475

974c
0489
addb

974c
5b2a
f276

974c
0b8a
a2d6

475¢
9341
da9d

475¢
2361
6abd

475¢
9542
dc9e

475¢
2562
6cbe

475¢
8439
d495

475¢
2d69
74chH

475¢
8b3a
d296

475¢
2b6a
72c6

276¢
9341
baad

276¢
4351
6abd

276¢
9542

bcae

276¢
4552
6cbe

276¢
8439
bdab

276¢
4d59
74chH

276¢
8b3a
b2a6

276¢
4b5q
72c6

078¢
5d29
64b5

078¢
9d49
addb

078¢
5b2a
6266

078¢
9b4q
a2d6

67bc
3d19
addb

67bc
5d29
cdeb

67bc
3bla
a2d6

67bc
5b2a
c2eb

T7cc
3311
aadd

T7cc
5321

caed

T7cc
3512

acde

T7cc
5522

ccee

3ald
5924
9341

3ald
6964
a3dl

3ald
5127
0944

3ald
61b7
a9d4

3ald
562b
9048

3ald
66bb
a0d8

3ald
5c2e
964b

3ald
6cbe
abdb

5a2d
3914
9341

5a2d
0944
371

5a2d
0984
63b1

5a2d
6964
c3el

5a2d
3117
0944

5a2d
9747
7974

5a2d
0f87
6964

5a2d
61b7
c9ed

5a2d
3616
9048

5a2d
964b
7078

5a2d
068b
60568

5a2d
66bb
c0e8

5a2d
3cle
964b

5a2d
9cde
f67b

5a2d
Oc8e
66bb

5a2d
6cbe
cbeb

8a3d
4954
d391

8a3d
2064
b3al

8a3d
4157
d994

8a3d
2167
b9a4

8a3d
465b
d098

8a3d
266b
b0a8

8a3d
4che
d69b

8a3d
2cbe
b6ab

9a4d
5924
371

9a4d
0984
a3dl

9a4d
5127
7974

9a4d
0187
a9d4

9a4d
562b
7078

9a4d
0685
a0d8

9a4d
5c2e
f67b

9a4d
Oc8e
abdb

4abd
8934
d391

4abd
2064
73cl

4abd
8137
d994

4abd
2167
79c4

4abd
863b
d098

4abd
266b
70c8

4abd
8cle
d69b

4abd
2cbe
76ch

2a6d
8934
b3al

2a6d
4954
73cl

2a6d
8137
b9a4

2a6d
457
79c4

2a6d
8635
50a8

2a6d
465b
70c8

2a6d
8cle
b6ab

2a6d
4che
76ch

0a8d
5924
63b1

0a8d
9944
a3dl

0a8d
5127
6964

0a8d
9fa7
a9d4

0a8d
562b
60568

0a8d
964b
a0d8

0a8d
5c2e
66bb

0a8d
9cde
abdb

6abd
3914
a3dl

6abd
5924
c3el

6abd
3f17
a9d4

6abd
5127
c9ed

6abd
361b
a0d8

6abd
562b
c0e8

6abd
3cle
abdb

6abd
5c2e
cbeb

3cle
5924
9542

3cle
6964
abd?2

3cle
5a2d
964b

3cle
6abd
abdb

5c2e
3914
9542

5c2e
9944
fh72

5c2e
0984
6562

5c2e
6964
che2

5c2e
3ald
964b

5c2e
9a4d
f67b

5c2e
0a8d
66bb

5c2e
6abd
cbeb

8cle
4954
d592

8cle
2964
b5a2

8cle
4abd
d69b

8cle
2a6d
b6ab

9cde
5924
fh72

9cde
0984
abd?2

9cde
5a2d
f67b

9cde
0a8d
abdb

4che
8934
d592

4che
2964
75¢2

4che
8a3d
d69b

4che
2a6d
76ch

2cbe
8934
b5a2

2cbe
4954
75¢2

2cbe
8a3d
b6ab

2cbe
4abd
76ch

Oc8e
5924
6562

Oc8e
9944
abd?2

Oc8e
5a2d
66bb

Oc8e
9a4d
abdb

6cbe
3914
abd?2

6cbe
5924
che2

6cbe
3ald
abdb

6cbe
5a2d
cbeb

14

B Possiblecountermeasures

Below we examine a few possible modifications that can be made to the encoding function to
protect it against attacks such the ones described in this note.

B.1 Massive mask changes

Supposed that instead of changing one bit here and there in the encoded message, the standard
is rewritten to have a massive, fixed, change in y(m). For example, let m;, e; be the ¢’ th nibbles
in the hexadecimal expansion of the irrational numbers = = 3.14159... and e = 2.71828...,
respectively. Possible encodings that use these masks could be:

pi(m) = Mg We_o My_1 My_2

Te—3 Tg—4 g3 My_4
T T 1M1 Mo

pa(m) = (mem1 B s(me_1)) (me—2 & s(me_z)) M1 me_y

(mo—3 @ s(my—3z)) (Te—a B s(My_a)) Me_1 My_s
(1 & s(m1)) (mo & s(mo)) m1 mo

pus(m) = (me—1 @ s(my—1 S ep1)) (To—2 B s(mu—a B es—2)) me_1 My_2

(o3 B s(my—3 P er—3)) (Mo—a B s(Mmy—a B €4-a)) My_3 My_4

(m1 B s(m1 @ e1)) (mo & s(mo & eg)) My My

For each of these, it seems much harder to find a systematic choice of ', z and messages m to

satisfy u(m) = I' - z. Below we describe some potential “partial attacks” against these encodings.
It is conceivable that an attacker can find large I' (say I' larger than the 3/4 power of the

modulus N), for which there are two strings z and z’ and two messages m and m' such that

p(m)=T -z and pu(m') =T 2’

Here ' would be unstructured (unlike in the attacks from above). Since z and z’ would both
be relatively small (of size N/T'), they might both be smooth. Then one could combine the two
signatures to eliminate the factor of I' and develop arelation among the small primes represented
by z and z’. We note that for the purpose of this attack, a multiplier T' is only useful if we can
find at least two strings z, 2’ which satisfy relations as above. Heuristically, we can assert that
many such I" factors EXIST, even very large ones (say, larger than the 9/10 power of N). However,
finding them might be quite difficult. We could not come up with any efficient way of finding a
suitable I' and the associated z, ', m, m/.

15

One possibility that we looked at, is to take two messages m, n’ that have small Hamming
distance from each other, consider the difference A = p(m) — p(m’) (which also has a low
Hamming weight, since the encoding x is very local), and find an integer I which is afactor of the
difference A. Then ater the nibbles in which m and m’ AGREE, creating new messages M, M’,
in the hope that (M) isamultipleof T. If so, then x(M') must also be amultiple of I'. However,
there seems to be no efficient way of changing m to M as above; having found I' by this fairly
random process, thereis a very slim hope that any M will exist for which x(M) isdivisibleby I
So this strategy seem to require quite abit of trial and error.

(We note that one might hope to make a heuristic argument that encodings as above might be
difficult to attack; that if we could find many smooth numbers z satisfying these relations, then
we could just as easily factor N in the first place. We have not looked into substantiating such
arguments.)

B.2 Length expanding encoding

Other constructions that may be considered, involve encoding the message m into a string longer
than the modulus N. This has the advantage that it forces the attacker to deal with larger integers
(and so it is potentially harder to find smooth integers), but it does not have the “ message recovery”
property. That is, it is no longer possible to extract m from the signature on m. For example,
suppose that we fix two constants ¢y and ¢;, each half the length of the modulus N. To encode a
message m (which is also half the length of the modulus N), we form the sums m + ¢y, m + ¢1,
express them as binary strings, and form the concatenated string

pa(m) = (m +co) (m +c1) m

whose length is 3/2 that of N. For this encoding, an attacker could try to get either w,(m) or the
residue (u4(m) mod N) to be smooth. Trying to get x4(m) to be smooth, one could set

a:co-22"—|—cl-2"
/8:2271_'_211_'_1
andthen py(m) =a+8-m

Aslong as o« and 3 are relatively primes, it would seem unlikely that m could be chosen much
smaller than /N to obtain ps(m) = T - z for alarge I' and a small, smooth, z. (Intuitively, it
seems hard to pick a small m so that u4(m) has a large factor which we understand and a small
factor that we don’t, where the small factor is required to be smooth, and that the small factor is
smaller than, say, v/N.)

If the attacker istrying to get the residue w4(m) mod N to be smooth, than he can compute a
constant § = o/ mod N, and heis reduced to trying to make the quantity § + m smooth. Again
this should be a daunting task, since ¢ is about the same size as N, and m is only about half that
size. Hence the attacker can control the low order bits by choice of m, but the uncontrolled part is
still of size about v/NV.

A (very informal) hope here is that if the attacker is forced into a position where he needs
certain “randomly generated integers’ of size /N to be smooth, then he is in no better position
than a person applying the Continued Fraction factoring method on N. (Such a person is also

16

generating integers of size v/N and depending on a number of them to be smooth for the success
of hismethod.) By contrast, in the attacks from above the attacker works with integers = of 64-128
bits, so the probability that they are smooth is much higher.

B.3 Encoding viasquaring

Another encoding method uses addition and squaring: We fix a random constant é of about the
same size as the modulus N, and set

ws(m) = m2+§

One advantage of this form is that finding many numbers of theformI' - = for a smooth z, is as
difficult as factoring ¢ (using the “Quadratic Sieve” method). On the other hand, w5(m) is harder
to compute than the other encodings, and the relation to the signed message m is not transparent.

17

